Lapított nagy ékkorona
Egy lapított nagy ékkorona [1] [2] a Johnson poliéderek egyike ( Zalgaller szerint J 89 - M 21 ).
21 lapból áll: 18 szabályos háromszögből és 3 négyzetből . A négyzet alakú lapok közül az 1-et két négyzet és két háromszög, a másik 2-t egy négyzet és három háromszög veszi körül; a háromszöglapok közül 8-at egy négyzet és két háromszög, a maradék 10-et három háromszög vesz körül.
33 azonos hosszúságú bordája van. 2 él két négyzetlap között helyezkedik el, 8 él - négyzet és háromszög között, a fennmaradó 23 - két háromszög között.
Egy lapított nagy ékkoronának 14 csúcsa van. 4 csúcson két négyzetlap és két háromszöglap fut össze; 4 csúcsban - négyzet és négy háromszög; a fennmaradó 6 - öt háromszög alakú.
Metrikus jellemzők
Ha egy lapított nagy ékkoronának hossza , akkor felületét és térfogatát a következőképpen fejezzük ki

Koordinátákban
Egy lapított nagy, élhosszúságú ékkoronát a derékszögű koordinátarendszerbe úgy helyezhetünk el , hogy csúcsai koordinátákkal rendelkezzenek [2]
ahol a második legnagyobb az egyenlet
legnagyobb [3] valós gyöke után
Ebben az esetben a poliéder szimmetriatengelye egybeesik az Oz tengellyel, és két szimmetriasík esik egybe az xOz és yOz síkkal.
Jegyzetek
- ↑ Zalgaller V. A. Konvex poliéder szabályos lapokkal / Zap. tudományos család LOMI, 1967. - T. 2. - Pp. 24.
- ↑ 1 2 A. V. Timofeenko. Nem összetett poliéderek, kivéve Platón és Arkhimédész szilárd testeit. ( PDF ) Alapvető és alkalmazott matematika, 2008, 14. évfolyam, 2. szám. – Pp. 195-197. ( Archiválva 2021. augusztus 30-án a Wayback Machine -nél )
- ↑ Lásd ennek az egyenletnek a gyökereit .
Linkek
Poliéder |
---|
helyes | |
---|
Szabályos , nem domború |
|
---|
Háromdimenziós az arcok számával (zárójelben jelölve) |
|
---|
konvex | Arkhimédeszi szilárd testek |
|
---|
Katalán testek |
|
---|
| Johnson poliéder |
---|
- négyzet alakú piramis
- Ötszögletű piramis
- Három lejtős kupola
- Négyszögű kupola
- öt lejtős kupola
- öt lejtős rotunda
- Hosszúkás háromszög alakú piramis
- Hosszúkás négyszögletű piramis
- Hosszúkás ötszögletű piramis
- Csavart hosszúkás négyszögletű piramis
- Csavart hosszúkás ötszögletű piramis
- háromszög alakú bipiramis
- Ötszögletű bipiramis
- Hosszúkás háromszög alakú bipiramis
- Hosszúkás négyszögletű bipiramis
- Hosszúkás, ötszögletű bipiramis
- Csavart, hosszúkás négyszögletű bipiramis
- Hosszúkás háromszög alakú kupola
- Hosszúkás csípős kupola
- Hosszúkás, ötoldalas kupola
- Hosszúkás ötlejtős rotunda
- Csavart hosszúkás háromszög kupola
- Csavart hosszúkás négyszögű kupola
- Csavart, hosszúkás, ötszögű kupola
- Csavart hosszúkás, öt lejtős rotunda
- Gyrobifastigium
- Három lejtős egyenes bi-kupola
- Négy lejtős egyenes bi-kupola
- Négy lejtős esztergált kétkupola
- Öt lejtős egyenes bi-kupola
- Öt lejtős bi-kupola
- Öt lejtős egyenes kupola
- Öt lejtős esztergált kupola-orotonda
- Öt lejtős egyenes birotunda
- Hosszúkás, három lejtős egyenes bi-kupola
- Hosszúkás, három lejtőn forgatható bi-kupola
- Hosszúkás négyzet alakú girobicupole
- Hosszúkás, öt lejtős egyenes bi-kupola
- Hosszúkás, öt lejtős esztergált kétkupola
- Hosszúkás, öt lejtős egyenes kupola
- Hosszúkás, ötlejtős esztergált kupola
- Hosszúkás, öt lejtős egyenes birotunda
- Hosszúkás öt lejtős esztergált birotunda
- Csavart hosszúkás, három lejtős bi-kupola
- Csavart, hosszúkás, négyszögű kétkupola
- Csavart hosszúkás, öt lejtős bi-kupola
- Csavart hosszúkás, öt lejtős kupola
- Csavart hosszúkás, öt lejtős birotunda
- Kiterjesztett háromszög prizma
- Duplán kiterjesztett háromszög prizma
- Háromszoros kiterjesztett háromszög prizma
- Kiterjesztett ötszögletű prizma
- Duplán kiterjesztett ötszögű prizma
- Kiterjesztett hatszögletű prizma
- Duplán ellentétes kiterjesztett hatszögletű prizma
- Duplán ferdén kiterjesztett hatszögletű prizma
- Háromszoros kiterjesztett hatszögletű prizma
- kiterjesztett dodekaéder
- A dodekaéder kétszeresen meghosszabbodik
- A dodekaéder kétszeresen meghosszabbodik
- Háromszoros kiterjesztett dodekaéder
- Dupla ferdén vágott ikozaéder
- Tripla vágott ikozaéder
- Kiterjesztett hármas metszetű ikozaéder
- Kiterjesztett csonka tetraéder
- Kiterjesztett csonka kocka
- Duplán bővített csonka kocka
- Kiterjesztett csonka dodekaéder
- Dodekaéder csonka dodekaéder kétszeresen kiterjesztve
- Dodekaéder dodekaéder
- Háromszorosan kiterjesztett csonka dodekaéder
- Csavart rombikozidodekaéder
- Duplán csavart rombikozidodekaéder
- Duplán csavart rombikozidodekaéder
- Háromcsavart rombikozidodekaéder
- Vágja le a rombikozidodekaédert
- Ellentétes csavart csonka rombikozidodekaéder
- Ferdén csavart csonka rombikozidodekaéder
- Duplán csavart csonka rombikozidodekaéder
- Dupla ellentétes metszetű rombikozidodekaéder
- A kétszer ferdén vágott rombikozidodekaéder
- Csavart, duplán vágott rombikozidodekaéder
- Trisected rombikozidodekaéder
- laphám biclinoid
- Tömör négyszögletes antiprizma
- ékkorona
- Kiterjesztett ékkorona
- Nagy ékkorona
- Lapított nagy ékkorona
- Öves biklinika
- Dupla Serporotonda
- Lapított háromszög alakú klinorothonda
|
|
|
|
---|
Képletek , tételek , elméletek |
|
---|
Egyéb |
|
---|