Aldehidek (a lat. al cohol dehyd rogenatus - alkohol mentes a hidrogéntől ) - az aldehidcsoportot (-CHO) tartalmazó szerves vegyületek osztálya [1] . Az IUPAC meghatározása szerint az aldehidek olyan R-CHO vegyületek, amelyekben a karbonilcsoport egy hidrogénatomhoz és egy R csoporthoz kapcsolódik [2] .
Az aldehid szót Justus von Liebig a latin alkohol dehydrogenatus - dehydrogenated alkohol [3] (egyes forrásokban alkohol dehydrogenatum [1] ) rövidítéseként alkotta meg . A formil gyök neve , valamint más rokon értelmű szavak ( formaldehid , formiátok ) a lat. formica - hangya [4] .
A népszerű és tudományos irodalomban gyakran találkozhatunk az aldehidek történeti vagy triviális elnevezéseivel, amelyeket a kialakult hagyomány miatt szisztematikus elnevezések helyett használnak. A triviális nevek általában a megfelelő karbonsavak nevéből származnak , valamint annak a forrásnak a nevéből, amelyből ezt vagy azt az aldehidet izolálták. Így például a formaldehidet hangyasav-aldehidnek, az etanolt ecetsavnak, a pentanált valeriánaldehidnek nevezik, a citronellal pedig azért kapta a nevét, mert citrusolajból izolálták .
Történelmileg a parfümgyártók sok illatanyagot aldehidnek neveztek, még azokat is, amelyeknek semmi közük hozzájuk. Ezek közé tartozik például az őszibarack- , eper- és kókuszdió-aldehid , amelyek nem aldehidek, hanem észterek vagy laktonok . Ezenkívül néhány aldehidet hagyományosan a szénatomok számával neveznek el, például az őszibarack aldehid, amelyet "aldehid C14-nek" neveznek, valójában csak 11 szénatomot tartalmaz [5] .
Az IUPAC nómenklatúra szerint az egyszerű aldehidek nevei a megfelelő alkánok nevéből jönnek létre az -al utótag hozzáadásával, a dialdehidek pedig - az utótag - dial ( ebben az esetben az aldehidcsoport szénatomja már a kiindulási alkán része). Ebben az esetben az aldehidcsoportnál lévő szám általában nem kerül a névbe, mivel mindig szélsőséges helyet foglal el. Ha a karbonilcsoport nem szerepel az alapszerkezetben (például ha az alapszerkezet egy gyűrűs szénhidrogén vagy heterociklus ), akkor a névhez a - karbaldehid [6] [7] utótag kerül hozzáadásra .
Ha egy adott vegyületben az aldehidcsoport nem a szenior csoport, akkor ilyen esetekben a formil - előtaggal jelöljük, jelezve a helyzetét [7] .
Az elavult Genf (1892) és Liège (1930) nómenklatúrában, amelyet később az IUPAC szisztematikus nómenklatúra váltott fel, az aldehideket - al [8] utótaggal jelölték .
Az aldehidek osztályozása a következőképpen történik (zárójelben a példák) [9] :
Az aldehidcsoport számos természetes anyagban megtalálható, mint például a szénhidrátok ( aldózok ), egyes vitaminok ( retina , piridoxál ). Nyomaik az illóolajokban találhatók, és gyakran hozzájárulnak kellemes illatukhoz, például a fahéjaldehid (a kassziaolajban akár 75%, a ceyloni fahéjolajban pedig akár 90%) és a vanillin .
Alifás aldehid CH 3 (CH 2 ) 7 C (H) = O (triviális név - pelargonic aldehid ) a citrusfélék illóolajaiban található, narancs illata van, ételízesítőként használják [10] .
Citral található a citromfű- és korianderolajban (akár 80%), a citronella a citronellában (kb. 30%) és az eukaliptusz, a benzaldehid a keserűmandulaolajban. Kumikaldehid a köményolajban , heliotropin a helitrop- és orgonaolajban, ánizaldehid és jázminaldehid kis mennyiségben számos illóolajban megtalálható [1] [5] .
A karbonsavak számos származéka ( savkloridok , észterek , nitrilek , amidok ) specifikus redukálószerek hatására redukálható aldehidekké [16] .
Az aromás aldehidek alapvetően eltérő, aromás elektrofil szubsztitúciós reakciókon alapuló módszerekkel állíthatók elő .
Aldehidek előállíthatók alkin hidratációs reakciókkal ( Kucherov-reakció ), karbonsavak pirolízisével és egyes fémek oxidjai ( ThO 2 , MnO 2 , CaO , ZnO ) feletti gőzök formájában 400-500 °C-on hidrolízissel, hidrolízissel . geminális dihalogén származékok (ha a halogénatomok az egyik szélső szénatomon találhatók) és egyéb reakciók [9] .
Az aldehidek szintézisére számos módszer ismert, de ipari felhasználásuk nagymértékben függ a nyersanyag elérhetőségétől. A telített alifás aldehidek előállításának főbb ipari módszerei a következők [21] :
Szintén nagy jelentősége van az illatiparban széles körben használt aldehidek néhány specifikus szintézisének [21] .
Az oxoszintézis a három vagy annál nagyobb szénatomszámú aldehidek előállításának legfontosabb folyamata. Ebben a reakcióban az alkének reakcióba lépnek a szintézisgázzal ( CO + H 2 ), és olyan aldehidet képeznek, amely egy szénatommal több, mint az eredeti alkén. Aszimmetrikus alkének alkalmazásakor termékkeverék keletkezik, melynek aránya katalizátor kiválasztásával változtatható [21] .
A primer alkoholokból történő hidrogénelvonás folyamatai közül a dehidrogénezést, az oxidációt és az oxidatív dehidrogénezést különböztetjük meg. Az alkoholok dehidrogénezését atmoszférikus nyomáson és 250-400 °C hőmérsékleten, réz- vagy ezüstkatalizátor jelenlétében végezzük . Az eljárás során hidrogén szabadul fel , amely tisztítás nélkül felhasználható más eljárásokban. A dehidrogénezés kereskedelmi jelentőségű az acetaldehid etanolból történő előállításánál : a reakciót 270-300 °C-on cérium -aktivált rézkatalizátoron hajtják végre, miközben ciklusonként 25-50% etanolt alakítanak át 90-95 szelektivitással. %. A melléktermékek az etil-acetát , etilén , krotonaldehid és magasabb szénatomszámú alkoholok. Az alkoholok oxidációját levegő vagy oxigén feleslegében, 350-450 °C hőmérsékleten vas- és molibdén -oxidokat tartalmazó katalizátoron végezzük . Az eljárást formaldehid előállítására használják . Ezeket az eljárásokat az aromás aldehidek szintézisében is alkalmazzák [21] .
Az alkének oxidációja az acetaldehid és akrolein előállításának fő ipari módszere . Az első esetben az etilén palládium és réz-klorid jelenlétében oxidáción megy keresztül, a Wacker-eljárás [21] [9] .
Az acetilén hidratálásán alapuló acetaldehid előállítási eljárása a közelmúltban elvesztette korábbi jelentőségét. Az utolsó nyugat-európai gyárat, amely e rendszer szerint acetaldehidet szintetizál, 1980-ban zárták be. Ennek oka az etilén nyersanyagként való nagyobb elérhetősége, valamint a katalizátor, a higany-szulfát toxicitása [21] .
A világ éves formaldehid-termelése (1996-os adatok szerint) 8,7·10 6 t [22] , acetaldehid (2003-ra) 1,3·10 6 t [23] volt .
A benzaldehid előállításának fő módszere a benzal-klorid savas vagy lúgos közegben történő hidrolízise . Hidrolizálószerként kalcium-hidroxid , kalcium-karbonát , nátrium-hidrogén-karbonát , nátrium- karbonát , valamint különféle savak használhatók fémsók hozzáadásával. A nyersanyagot viszont toluol klórozásával nyerik az oldalláncba. Egy kevésbé elterjedt eljárás a toluol részleges oxidációján alapul [24] .
A formaldehid szobahőmérsékleten gáz halmazállapotú anyag. A C 12 -ig terjedő aldehidek folyékonyak, míg a normál aldehidek, amelyek hosszabb, el nem ágazó szénvázúak, szilárd halmazállapotúak.
A lineáris aldehidek forráspontja magasabb, mint az izomerjeké. Például a valerián-aldehid 100,4 °C-on, míg az izovalerialdehid 92,5 °C-on forr. Alacsonyabb hőmérsékleten forrnak, mint az azonos szénatomszámú alkoholok, például a propionaldehid 48,8 °C -on, a propanol-1 pedig 97,8 °C-on. Ez azt mutatja, hogy az aldehidek, ellentétben az alkoholokkal , nem erősen asszociált folyadékok [9] . Ezt a tulajdonságot alkalmazzák az aldehidek szintézisében alkoholok redukciójával: mivel az aldehidek forráspontja általában alacsonyabb, desztillációval könnyen elválaszthatók és tisztíthatók az alkoholtól [25] . Ugyanakkor forráspontjuk jóval magasabb, mint az azonos molekulatömegű szénhidrogéneké , ami nagy polaritásukkal függ össze [9] .
A viszkozitás , a sűrűség és a törésmutató 20 °C-on az aldehidek moláris tömegének növekedésével nő. Az alsóbbrendű aldehidek mozgékony folyadékok, a heptanáltól az undekanálig terjedő aldehidek pedig olajos állagúak [25] .
A formaldehid és az acetaldehid szinte korlátlanul elegyedik vízzel, azonban a szénváz hosszának növekedésével az aldehidek vízben való oldhatósága nagymértékben csökken, például a hexanál oldhatósága 20 ° C-on csak 0,6 tömeg%. Az alifás aldehidek alkoholokban , éterekben és más szokásos szerves oldószerekben oldódnak [25] .
Az alacsonyabb aldehidek szúrós szagúak, a magasabb homológok (С 8 -С 13 ) pedig számos parfüm összetevői [25] .
Név | Képlet | Olvadáspont, °C | Forráspont, °C | Sűrűség, g/cm³ (20 °C-on) |
---|---|---|---|---|
Formaldehid | HCHO | −93 | −21 | 0,82 (-20 °C-on) |
Acetaldehid | CH 3 CHO | −123 | 21 | 0,778 |
Propanal | CH3CH2CHO _ _ _ _ | −81 | 49 | 0,797 |
Butanal | CH3CH2CH2CHO _ _ _ _ _ _ | −99 | 76 | 0,803 |
Akrolein | CH 2 = CH-CHO | −88 | 53 | 0,841 |
Krotonaldehid | CH3 - CH=CH-CHO | −74 | 104 | 0,852 |
Benzaldehid | C6H5CHO _ _ _ _ | −56 | 179 | 1.05 |
Szalicilaldehid | o -HO–C 6 H 4 CHO | 2 | 197 | 1.16 |
Vanillin |
|
82 | 285 | — |
A karbonilcsoport szénatomja sp 2 hibridizációs állapotban van . Az RCH, RCO és HCO szögek körülbelül 120°-osak (ahol R jelentése alkilcsoport).
A karbonilcsoport kettős kötése fizikai természetében hasonló a szénatomok közötti kettős kötéshez, ugyanakkor a C=O kötés energiája (749,4 kJ / mol ) nagyobb, mint két egyes kötés energiája (2 ×358 kJ/mol) CO. Másrészt az oxigén elektronegatívabb elem, mint a szén, ezért az oxigénatom közelében az elektronsűrűség nagyobb, mint a szénatom közelében. A karbonilcsoport dipólusmomentuma ~9⋅10 −30 C·m [9] . A C=O kötés hossza 0,122 nm [14] .
A "szén-oxigén" kettős kötés polarizációja a mezomer konjugáció elve szerint a következő rezonáns struktúrák feljegyzését teszi lehetővé :
A töltések e szétválását fizikai kutatási módszerek igazolják, és nagymértékben meghatározza az aldehidek, mint kifejezett elektrofilek reakcióképességét, és lehetővé teszi számukra, hogy számos nukleofil addíciós reakcióba lépjenek [28] .
A nagy reakcióképesség poláris C=O kötés jelenlétével függ össze. Az aldehidek kemény Lewis-bázisok, és ennek megfelelően a bennük lévő oxigénatom kemény savakkal koordinálható: H + , ZnCl 2 , BF 3 , AlCl 3 stb. [14] Az aldehidek kémiai tulajdonságai általában a ketonokhoz hasonlóan azonban az aldehidek nagyobb aktivitást mutatnak, ami nagyobb kötéspolarizációval jár. Ezenkívül az aldehideket olyan reakciók jellemzik, amelyek nem jellemzőek a ketonokra, például hidratálás vizes oldatban.
Az aldehidek polarizált karbonilcsoportot tartalmaznak , és hajlamosak nukleofil reagensek hozzáadására , mind semlegesek ( ammónia , aminok , víz , alkoholok , tiolok stb.), mind anionosak (cianidion CN- , alkoholátok , H - hidridion , karbanionok stb .). A hidridekkel , például LiAlH 4 lítium-alumínium-hidriddel végzett redukciós reakciók , valamint a Grignard-reagensekkel való kölcsönhatás kivételével ezek a folyamatok reverzibilisek . A reverzibilis addíciós reakciók két típusát is meg kell különböztetni: az első típus tetraéder addíciós termék képződéséhez vezet, a második típus pedig egy későbbi dehidratációs reakciót is magában foglal , amely kettős kötés kialakulását eredményezi az elektrofil reakciók között. szénatom és a nukleofil. A második típusú reakciók főként a nitrogéntartalmú nukleofilekre jellemzőek [29] .
Ezekben a reakciókban az aldehidek reaktívabbak, mint a ketonok. Ennek oka a ketonok nagyobb termodinamikai stabilitása, valamint az aldehidek hozzáadásakor jelentkező kevésbé sztérikus akadályok [29] .
Az ilyen típusú legegyszerűbb modellreakció az aldehidek hidratálása vizes oldataikban. Az Eltekov-Erlenmeyer szabály szerint a keletkező 1,1-diolok instabilak, és a vízmolekulák eliminálásával visszaalakulnak az eredeti karbonilvegyületekké. Hidratáció csak az alacsonyabb aldehideknél figyelhető meg jelentős mértékben. Tehát a formaldehid 99,999%, az acetaldehid 58% -kal hidratált. Ha a szénatomon lévő pozitív töltést kellőképpen megnövelik a hozzá kapcsolódó gyökök, az 1,1-diolok stabilakká válnak és izolálhatók (például a klorál könnyen megköti a vizet, és stabil adduktot képez - klorálhidrát ). A hidratációs reakciót savak és bázisok egyaránt katalizálják [14] [30] .
Hasonló módon megy végbe az alkoholok karbonilcsoporthoz való hozzáadásának reakciója is, ami a szerves szintézisben a karbonilcsoport védelme szempontjából fontos. Az elsődleges addíciós terméket hemiacetálnak nevezik , majd sav hatására acetállá alakul . Állás közben az aldehidek ciklikus vagy polimer acetálokat is képeznek (pl. trioxán vagy paraform formaldehid, paraldehid pedig acetaldehid ). Ha ezeket a vegyületeket nyomnyi savval hevítjük, depolimerizáció és a kiindulási aldehidek regenerációja következik be [31] .
Hasonló átalakulások történnek az alkoholok kéntartalmú analógjai - tiolok - részvételével is ; tioacetálokhoz vezetnek, amelyek szintén fontos szerepet játszanak a finom szerves szintézisben [31] .
Az aldehidek hidrogén-cianid HCN hozzáadásával cianohidrint képeznek , amelyet szerves szintézisben használnak α, β-telítetlen vegyületek, α-hidroxisavak, α- aminosavak előállítására . Ez a reakció is reverzibilis, és bázisok katalizálják. Laboratóriumi körülmények között a hidrogén-cianidot (forráspont: 26 °C) általában ekvivalens mennyiségű ásványi sav nátrium- vagy kálium -cianidon történő hatására állítják elő [32] .
A nukleofileknek az aldehidekhez való hozzáadásának viszonylag csekély sztérikus akadályai lehetővé teszik azok biszulfitszármazékokká való átalakítását nagy feleslegben lévő nátrium - hidroszulfit NaHS03 hatására . Ezek a vegyületek kristályos anyagok, és gyakran használják a megfelelő aldehidek izolálására, tisztítására vagy tárolására, mivel az utóbbiak savval vagy bázissal könnyen regenerálhatók belőlük [32] .
Az aldehidek reakciója magnézium- és szerves lítiumvegyületekkel szekunder alkoholok képződéséhez vezet (formaldehid esetén elsődleges). A folyamatot bonyolíthatják a karbonilvegyület enolizálásának és redukciójának mellékreakciói, amelyek a hozam csökkenéséhez vezetnek. Lítiumorganikus vegyületek alkalmazásakor ezek az interferenciák kiküszöbölhetők [33] .
Amikor az aldehidek primer és szekunder aminokkal reagálnak, iminek, illetve enaminok képződnek. Mindkét reakció alapja nukleofil reagensek hozzáadása a karbonilcsoporthoz, majd a víz eltávolítása a keletkező tetraéderes intermedierből. Az iminképzési reakció savas katalízist igényel, és a leghatékonyabban a 3 és 5 közötti pH tartományban megy végbe. A kielégítő hozamú enaminok előállításához víz azeotróp desztillációját kell alkalmazni, ami lehetővé teszi az egyensúly eltolását a termékképzés irányába. Általában ciklikus aminokat ( pirrolidint , piperidint vagy morfolint ) használnak szekunder aminként [34] .
Az aldehidek hasonlóan reagálnak hidroxil -aminnal , hidrazinnal , 2,4-dinitrofenil- hidrazinnal , szemikarbaziddal és más hasonló vegyületekkel. Az így kapott vegyület többsége kristályos, és felhasználható az aldehidek azonosítására olvadáspont és egyéb jellemzők alapján. Ezeket a vegyületeket szerves szintézisben is használják, például a hidrazonok redukálhatók a Kizhner-Wolff reakcióval [34] .
Nukleofil reagensek hozzáadása az α,β-telítetlen aldehidekhez történhet mind a karbonilcsoportnál, mind a konjugált rendszer „negyedik” pozíciójában. Ennek az az oka, hogy a szén-szén kettős kötés a poláris karbonilcsoport hatására polarizálódik ( mezomer hatás ), és a kettős kötés karbonilcsoportjától legtávolabbi szénatom részleges pozitív töltést kap. Egy nukleofil reakcióját egy adott szénatommal konjugált addíciónak vagy 1,4-addíciónak nevezzük. A karbonilcsoporthoz való kapcsolódást analógia útján 1,2-addíciónak nevezzük. Az 1,4-addíció formális eredménye egy nukleofil hozzáadása a szén-szén kettős kötésnél. Sok esetben az 1,2- és 1,4-addíciós reakciók versengő reakciók, de néha lehetőség van szelektív reakciók végrehajtására 1,2- vagy 1,4-addíciós termékek előállítására [35] .
Primer és szekunder aminok hozzáadása α,β-telítetlen aldehidekhez enyhe körülmények között megy végbe, és 1,4-termék képződéséhez vezet. Ezzel szemben a hidrogén-cianid esetében mindkét termék kompetitív képződése figyelhető meg az 1,2-addíciós termék túlsúlyával. Az 1,2-addíció lehetőségének kizárására ebben a reakcióban speciális reagenst alkalmaznak - dietil-alumínium-cianidot (C 2 H 5 ) 2 AlCN [36] .
A szerves lítiumvegyületek kizárólag a karbonilcsoporthoz adnak hozzá allil-alkoholokat. A konjugált addíciót szerves rézreagensek - dialkil-kuprátok - hatására hajtják végre, amelyek lehetővé teszik, hogy a karbonilvegyületbe ne csak egy primer, hanem egy szekunder vagy tercier alkil- , alkenil- vagy arilcsoportot is bevigyenek. Az ultranagy tisztaságú magnéziumból nyert szerves magnézium reagensek ( Grignard-reagensek ) szintén 1,2-terméket képeznek, míg a szokásos Grignard-reagensek, feltehetően más fémek (például réz és vas ) szennyeződései miatt, szintén 1 ,2-termék , 2- és 1,4-összeadás, melyet térbeli tényezők szabályoznak. Jelenleg a szerves magnézium reagensek elveszítették fontosságukat ezen a területen [37] .
A szerves bórvegyületek (trialkilboránok) telítetlen aldehidekkel reagálva 1,4-addíciós termékeket képeznek [38]
Az aldehidek halogénekkel ( klór , bróm vagy jód ) reagálnak, halogénszármazékokat képezve, míg a halogénezés kizárólag az α-helyzetben (a karbonilcsoporttal szomszédos helyzetben) történik [39] .
Az aldehidek gyenge savak tulajdonságait mutatják: bázisok hatására képesek leválasztani egy protont az α-metiléncsoportból, és enolát ionná alakulnak . Általában erős bázisokat ( nátrium- hidrid , kálium-hidrid , lítium-diizopropil -amid stb.) használnak aprotikus oldószerekben ( tetrahidrofurán , DMSO ) a kellően teljes deprotonáláshoz. Az aldehidek karbonil formájának átalakulása enol formává erős bázisok hiányában is végbemegy. A keletkező enolok általában sokkal kevésbé stabilak, mint a karbonilforma, például az acetaldehid egyensúlyi állandója szobahőmérsékleten csak 6⋅10 -5 [40] ). Ezt az egyensúlyt, amely a karbonil és enol forma között létezik, keto-enol tautomerizmusnak nevezik [41] .
Az enolát ionok képzésére való képességük miatt az aldehidek kémiai reakciók sorozatába lépnek be, ahol ezek a részecskék nukleofilként működnek . Különösen jellemző rájuk a kondenzációs reakciók. Gyengén bázikus közegben ( acetát , kálium-karbonát vagy szulfit jelenlétében) aldolkondenzáción mennek keresztül , melynek során az aldehidmolekulák egy része karbonil-komponensként működik (reagál karbonilcsoporttal), az aldehidmolekulák egy része pedig egy bázis hatására enolát ionokká alakulnak, és metilén komponensként működnek (reagál az α-metilén kötéssel). A keletkező aldol hevítéskor α,β-telítetlen aldehidet képez (a telített aldehidről a telítetlen aldehidre az aldolon keresztül kroton kondenzációnak vagy aldol-kroton kondenzációnak nevezik ) [9] [42] .
Két különböző aldehid reakciója négy különböző aldol keverékét eredményezi. Kivételt képeznek azok az esetek, amikor a reagensek szétválása karbonil- és metilénkomponensekre nyilvánvaló (például az egyik aldehid nem tartalmaz α-metilén egységet, és csak karbonilkomponens szerepét töltheti be). Módszereket is kidolgoztak az ilyen reakciók szelektivitásának növelésére. Az aromás aldehidek ketonokkal való keresztkondenzációját Claisen-Schmidt reakciónak nevezik [42] . Az aldehidek hasonló reakciói is ismertek: Knoevenagel-reakció , Tishchenko -reakció , Perkin-reakció , benzoinkondenzáció és mások [1] .
Az aldehidek oxigénnel a megfelelő karbonsavakká történő oxidációja gyöklánc- mechanizmussal ( autooxidáció ) megy végbe, közbenső termékek - peroxosavak - képződésével.
Az aldehidek különféle oxidálószerekkel könnyen oxidálhatók a megfelelő karbonsavakká. A leggyakrabban a kálium-permanganátot használják , valamint a Jones-reagenst ( CrO 3 + H 2 SO 4 ), amely a legjobb eredményt adja (alacsony hőmérsékleten rövid időn belül több mint 80%-os karbonsavhozam érhető el). A Jones-reagensnek sem hiányosságai vannak, különösen, hogy nem elég szelektív és más funkciós csoportokat oxidál, a savas környezet pedig hozzájárul a szubsztrát nemkívánatos izomerizációjához vagy bomlásához [43] .
Ezek a problémák elkerülhetők enyhébb oxidálószer - Tollens -reagens ( ezüst-oxid ammóniaoldat ) alkalmazásával, amely nem befolyásolja az alkoholok többszörös kötéseit és hidroxilcsoportjait . Ezt a reakciót széles körben használják aldehidek kimutatására (ez az "ezüsttükör" reakció) [43] .
Az aldehidek α-helyzetében lévő metiléncsoportok szelén-dioxiddal történő oxidációja 1,2-dikarbonil-vegyületek képződéséhez vezet [14] [43] .
Az aldehidek lassan oxidálódnak a levegőben szobahőmérsékleten. Ezt a gyökös folyamatot besugárzás vagy Fe 2+ -ionok jelenlétében felgyorsítja . Az aromás aldehidek könnyebben oxidálódnak, mint az alifásak. Ennek a reakciónak nincs szintetikus jelentősége, de az aldehidek tárolásánál figyelembe kell venni annak lefolyását: kívánatos sötétben és inert atmoszférában tárolni [44] .
Az aromás aldehidek persavak hatására is karbonsavakká vagy fenol- észterekké oxidálódnak ( Bayer-Villiger reakció ) , és a termékek aránya az aromás magban lévő szubsztituensektől és a közeg savasságától is függ [44] .
Az aldehidek primer alkoholokká redukálhatók . A legelterjedtebb redukciós módszerek közé tartoznak a komplex hidridekkel végzett reakciók: nátrium-bór-hidrid NaBH 4 , lítium-bór -hidrid LiBH 4 és lítium-alumínium-hidrid LiAlH 4 . A nátrium-bór-hidrid szelektívebb reagens, és lehetővé teszi az aldehidek és ketonok karbonilcsoportjának redukcióját anélkül, hogy befolyásolná az észter- , nitril- , amid- , lakton- és oxiráncsoportokat . Nem javítja ki az izolált szén-szén kettős kötést sem. A lítium-alumínium-hidrid kevésbé szelektív és redukálja a fent felsorolt funkciós csoportokat, így használatával az aldehidek redukciója csak ezen csoportok hiányában lehetséges [45] .
Történelmi szerepet játszik a Meerwein-Pondorff-Werley reakció , amelyben redukálószerként alumínium -izopropoxidot használnak . Jelenleg ezt a módszert felváltotta az aldehidek és ketonok hatékonyabb redukciós reakciója izopropil-alkohollal alumínium- oxid jelenlétében [45] .
Az alifás aldehideket általában nem hidrogénezik palládiumkatalizátoron , de erre a célra a szenes ruténium , Raney-nikkel vagy platina használható [45] .
A karbonilcsoport oxigénatomjának nem megosztott elektronpárjainak megfelelően az aldehidek kemény Lewis-bázisok, és ennek megfelelően a bennük lévő oxigénatom kemény savakkal koordinálható: H + , ZnCl 2 , BF 3 , AlCl 3 stb. [14] . Savas környezetben az aldehidek protonálódnak, és oxónium-kation keletkezik. Az aldehidek nagyon gyenge bázisok, sokkal gyengébbek, mint a víz és az alkoholok, de ennek ellenére ezek a tulajdonságok rendkívül fontos szerepet játszanak a kémiai reakciókban [46] .
Az α-szénatomnál hidrogénatomot nem tartalmazó (azaz R3 CCHO általános képletû ) aldehidek lúg vizes-alkoholos oldatának hatására belépnek a Cannizzaro-reakcióba , amelyben egyidejűleg oxidálószerként is működnek. és redukálószer . Az eljárás hatókörét kiterjeszti az aromás aldehid és formaldehid közötti Cannizzaro keresztreakció lúg jelenlétében. Ebben az esetben a formaldehid a redukálószer, a másik aldehid pedig a megfelelő alkohollá redukálódik [47] .
Az aldehidek Wittig-reakcióval reagálhatnak foszfor-ilidekkel, adott kettős kötés konfigurációjú alkéneket képezve (általában Z -alkének képződnek, de olyan módosításokat is kifejlesztettek, amelyek lehetővé teszik az E -alkének előállítását). Jelenleg ez az egyik legjobb módszer az alkének regiospecifikus szintézisére [48] .
Az aldehidek kén-ilidekkel is reagálva oxiránokat adnak ( Corey-Csajkovszkij reakció ) [49] .
Az aldehidek dekarbonilezési reakción mennek keresztül bizonyos átmenetifém-komplexek, például Wilkinson-katalizátor jelenlétében [50] .
Az aldehidek könnyen azonosíthatók az IR-spektrum alapján - az aldehidcsoportban a CH kötés feszítőrezgéseivel kapcsolatos specifikus abszorpciós sávokat tartalmaz: két éles csúcsot, amelyek messze túl vannak a hagyományos CH kötésekre jellemző abszorpciós tartományon. Emellett az aldehidek IR spektruma általában tartalmaz abszorpciós sávokat a С=O és CH kötések nyújtási rezgései miatt: ν С=O =1725-1685 cm −1 , ν С-H =2850; 2750 cm −1 [14] .
Az aldehidek tömegspektruma meglehetősen kifejezett molekulaionnal rendelkezik, bár tartalma meglehetősen alacsony lehet. Az alkilgyökök elvesztése acilkationok képződéséhez vezet. Különösen jellemző rájuk az α- és β-hasadás, valamint a McLafferty-átrendeződés [55] . A mozgékony γ-H atomot tartalmazó és az α-szénnél szubsztituenst nem tartalmazó aldehidekre az m/z=44 csúcs a jellemző, a szubsztituenst tartalmazóknál pedig a szubsztituált ion intenzív csúcsa, m/z=44 +12n jelenik meg [1] [56] .
Az aldehid 1H NMR spektrumában a legjellemzőbb jel a formil proton jel, amely általában a leggyengébb mezőben helyezkedik el a δ 9,4-10,1 ppm tartományban (9,4-9,7-alifás, 9,6-10, 1-aromás) [1] . Az aldehidcsoport jele a 13 C NMR spektrumban a 182-215 ppm tartományban található [57] .
Két abszorpciós maximum p-től p*-ig (<200 nm) és n-től p*-ig (>200 nm) [57] .
Az elektronikus spektrumok λ max 290 nm-es sávokat tartalmaznak az RCHO esetében (R=CH 3 , C 2 H 5 , C 3 H 7 ), 345 nm-es akroleinnél és 327 nm-es krotonaldehidnél [1] .
Mérgező. Képes felhalmozódni a szervezetben. Az általános mérgezésen kívül irritáló és neurotoxikus hatásuk is van. A hatás a molekulatömegtől függ: minél nagyobb, annál gyengébb az irritáló, de annál erősebb a narkotikus hatás, és a telítetlen aldehidek mérgezőbbek, mint a telítettek. Egyesek rákkeltő tulajdonságokkal rendelkeznek [58] .
Az aldehidek irritálják a szem nyálkahártyáját és a felső légutakat, és károsan hatnak az idegrendszerre. A molekulában lévő szénatomok számának növekedésével az irritáló hatás gyengül. A telítetlen aldehidek jobban irritálnak, mint a telítettek.
Az acetaldehid CH 3 CHO gerjesztést, majd érzéstelenítést okoz. A szervezetben az etil-alkohol metabolizmusának köztes terméke . Ennek az aldehidnek a trimere - paraldehid (C 2 H 4 O) 3 - hatása erősebb és hosszabb, míg a tetramer - metaldehid (C 2 H 4 O) 4 - mérgezőbb. Az aldehid molekulában az alkil gyök megnyúlása a fiziológiai aktivitás növekedéséhez vezet, ugyanakkor a toxicitás is nő [59] .
A halogén bevitele egy aldehidmolekulába fokozza annak narkotikus (hipnotikus) hatását. Így a klorál narkotikus tulajdonságai kifejezettebbek, mint az acetaldehidé. Az aldehidcsoport fokozza az anyag toxicitását, de az aldehid hidratált formájának kialakulásával jelentősen csökkenthető. A hidratált formák enyhén mérgezőek, ebben a formában a chloral chloral hydrate néven használatos a gyógyászatban , amely hipnotikus hatást fejt ki. Hidroxilcsoportok bevitele egy aldehid molekulába vagy kondenzációjuk aldolok képződésével jelentősen csökkenti a vegyületek reaktivitását, valamint élettani aktivitását. Így a cukrok farmakológiailag inert anyagok. A legtöbb aromás aldehid alacsony toxicitású, mivel könnyen oxidálódik a megfelelő savakká, amelyek általában meglehetősen inertek [59] .
A molekulában aldehidcsoportot tartalmazó gyógyszerek és fő hatásuk a szervezetre
Név | Hatás a testre |
---|---|
Formaldehid (formalin) | fertőtlenítő |
Klór-hidrát | Altató, görcsoldó |
Citral | Csökkenti a vérnyomást |
Tsiminal | Antimikrobiális |
Az összes aldehid közül a formaldehid keletkezik a legtöbbet (körülbelül 6 millió tonna/év). Főleg gyanták - bakelit, gallalit ( karbamiddal , melaminnal és fenollal kombinálva ) - gyártására használják, bőr cserzésére, gabonák cserzésére. Ezenkívül gyógyszereket szintetizálnak belőle ( urotropin ), és tartósítószerként használják biológiai készítményekhez (a fehérje hajtogatásának képessége miatt). Ez a metilén-difenil-diizocianát prekurzora , amelyet poliuretánok és RDX (meglehetősen erős robbanóanyag) előállításához használnak.
A termelés szempontjából a második legnagyobb aldehid a vajsav-aldehid (évente körülbelül 2,5 millió tonnát nyernek hidroformilezéssel ). Egyes aldehideket csak kis mennyiségben szintetizálnak (kevesebb, mint 1000 tonna/év), és parfümökben és illatanyagokban (főleg 8-12 szénatomos aldehidekben) használják őket [1] . Például ez a fahéjaldehid és származékai - citrál és liliom [60] .
Az acetaldehidet ecetsav , etil-alkohol és butadién szintézisében használják piridin- , pentaeritrit- és krotonaldehid - származékok előállítására, valamint polivinil-acetát és műanyagok szintézisében .
Az aldehideket alkoholok (butil, 2-etilhexanol, pentaeritrit), karbonsavak, polimerek, antioxidánsok, piridin bázisok szintézisére használják [1] .
![]() |
| |||
---|---|---|---|---|
|
A szerves vegyületek osztályai | |
---|---|
szénhidrogének | |
Oxigén tartalmú | |
Nitrogén tartalmú | |
Kén | |
Foszfor tartalmú | |
haloorganikus | |
szerves szilícium |
|
Szerves elem | |
További fontos osztályok |
Aldehidek | |
---|---|
Határ | |
Korlátlan | |
aromás | |
Heterociklikus |