Az aminosavak ( aminokarbonsavak; AMK ) olyan szerves vegyületek , amelyek molekulája egyszerre tartalmaz karboxil- és amincsoportokat . Az aminosavak alapvető kémiai elemei a szén (C), a hidrogén (H), az oxigén (O) és a nitrogén (N), bár bizonyos aminosavak gyökében más elemek is előfordulnak. Körülbelül 500 természetesen előforduló aminosav ismert (bár csak 20-at használnak a genetikai kódban). [1] Az aminosavak olyan karbonsavak származékainak tekinthetők , amelyekben egy vagy több hidrogénatom van .aminocsoportok helyettesítik.
A mintegy 500 ismert aminosav többségét 1953 óta fedezték fel, többek között új antibiotikumok keresése során mikroorganizmusokban, gombákban, magvakban, növényekben, gyümölcsökben és állati folyadékokban. Közülük körülbelül 240 szabad formában található meg a természetben, a többi pedig csak az anyagcsere közbenső elemeiként [1] .
Az esszenciális aminosavak félkövér betűkkel vannak szedve .
Aminosav | Rövidítés | Év | Forrás | Először kiemelt [3] |
---|---|---|---|---|
glicin | Gly, G | 1820 | zselatin | A. Braconno |
Leucin | Leu, L | 1820 | Izomrostok | A. Braconno |
Tirozin | Tyr, Y | 1848 | Kazein | J. von Liebig |
Derűs | Ser, S | 1865 | Selyem | E. Kramer |
Glutaminsav | Glu, E | 1866 | növényi fehérjék | G. Ritthausen |
Glutamin | Gln, Q | 1877 | Búzaliszt | E. Schulze [4] |
Aszparaginsav | Asp, D | 1868 | Konglutin , hüvelyes ( spárgacsíra ) | G. Ritthausen |
Aszparagin | Asn, N | 1806 | spárgalé _ | L.-N. Vauquelin és P. J. Robiquet |
Fenilalanin | Phe, F | 1881 | csillagfürt csírák | E. Schulze [4] , J. Barbieri |
Alanin | Ala, A | 1888 | selyem fibroin | A. Strekker , T. Weil |
Lizin | Lys, K | 1889 | Kazein | E. Drexel |
Arginin | Arg, R | 1895 | Kürt anyag | S. Hedin |
hisztidin | Az övé, H | 1896 | Sturin, hisztonok | A. Kossel [5] , S. Gedin |
cisztein | Cys, C | 1899 | Kürt anyag | K. Mörner |
Valine | Val, V | 1901 | Kazein | E. Fisher |
Prolin | Pro, P | 1901 | Kazein | E. Fisher |
Hidroxiprolin | Hyp, HP | 1902 | zselatin | E. Fisher |
triptofán | Trp, W | 1902 | Kazein | F. Hopkins , D. Kohl |
Izoleucin | Ile, én | 1904 | Fibrin | F. Erlich |
metionin | Met, M | 1922 | Kazein | D. Möller |
Treonin | Thr, T | 1925 | Zab fehérjék | S. Shriver és mások |
Hidroxilizin | Hyl, hK | 1925 | Halfehérjék _ | S. Shriver és mások |
Fizikai tulajdonságait tekintve az aminosavak élesen eltérnek a megfelelő savaktól és bázisoktól . Mindegyik kristályos anyag, jobban oldódik vízben, mint szerves oldószerekben , olvadáspontjuk meglehetősen magas; sok közülük édes ízű. Ezek a tulajdonságok egyértelműen jelzik e vegyületek sószerű természetét. Az aminosavak fizikai és kémiai tulajdonságainak jellemzői szerkezetüknek köszönhetők - két ellentétes funkciós csoport egyidejű jelenléte: savas és bázikus .
Valamennyi aminosav amfoter vegyület, a molekulájukban található karboxilcsoport - C O O H - miatt savas tulajdonságokat , valamint az aminocsoport - N H 2 - miatt bázikus tulajdonságokat mutathatnak . Az aminosavak kölcsönhatásba lépnek savakkal és lúgokkal :
N H 2 - CH 2 - C O O H + H Cl → H Cl • N H 2 - CH 2 - C O O H ( glicin hidroklorid sója) _ _ N H 2 - CH 2 - C O O H + Na O H → H 2 O + N H 2 - CH 2 - C O O Na ( glicin - nátrium só)Ennek köszönhetően az aminosavak vizes oldatai pufferoldatok tulajdonságaival rendelkeznek , azaz belső sók állapotában vannak.
N H 2 - CH 2 C O H N + H 3 - CH 2 C O O - _ _ _Az aminosavak általában minden, a karbonsavakra és aminokra jellemző reakcióba bekapcsolódhatnak .
N H 2 - CH 2 - C O O H + C H 3 O H → H 2 O + N H 2 - CH 2 - C O O CH 3 ( glicin - metil -észter)Az aminosavak fontos jellemzője a polikondenzációs képességük, ami poliamidok képződéséhez vezet , beleértve a peptideket , fehérjéket , nylont , kapront .
Peptidképződési reakció :
H O O C - CH 2 - N H - H + H O O C - CH 2 - N H 2 → H O O C - CH 2 - N H - C O - CH 2 - N H 2 + _ _ _ _ H2O _ _Az aminosav izoelektromos pontja az a pH, amelynél az aminosavmolekulák maximális hányada nulla töltést tartalmaz. Ezen apHaminosav a legkevésbé mobil az elektromos térben, és ez a tulajdonság felhasználható aminosavak, valamintfehérjékéspeptidek.
Az ikerion olyan aminosavmolekula, amelyben az aminocsoportot -NH3 + , a karboxilcsoportot pedig -COO - ként jelöljük . Egy ilyen molekulának jelentős dipólusmomentuma van nulla nettó töltésnél. A legtöbb aminosav kristályai ezekből a molekulákból épülnek fel.
Egyes aminosavak több aminocsoportot és karboxilcsoportot tartalmaznak. Ezen aminosavak esetében nehéz bármilyen specifikus ikerionról beszélni .
A legtöbb aminosav a fehérjék hidrolízise során vagy kémiai reakciók eredményeként nyerhető:
C H 3 C O O H + Cl 2 + (katalizátor ) → CH 2 Cl C O O H + H Cl ; C H 2 Cl C O O H + 2 N H 3 → N H 2 - C H 2 C O O H + N H 4 ClMinden α-aminosav, amely az élő szervezetek részét képezi, a glicin kivételével , aszimmetrikus szénatomot tartalmaz ( a treonin és az izoleucin két aszimmetrikus atomot tartalmaz), és optikai aktivitással rendelkeznek. Szinte minden természetben előforduló α-aminosav L-konfigurációval rendelkezik, és csak ezek szerepelnek a riboszómákon szintetizált fehérjék összetételében .
A metabolikusan inaktív szerkezeti fehérjékben található aszparaginmaradékok lassú spontán, nem enzimatikus racemizálódáson mennek keresztül: a dentin és a fogzománc fehérjéiben az L-aszpartát évi ~0,1%-os sebességgel D-formává alakul [6] , amely felhasználható. az emlősök életkorának meghatározására. Az aszpartát racemizálódását a kollagén öregedésében is megfigyelték ; Feltételezzük, hogy az ilyen racemizáció az aszparaginsavra specifikus, és a peptidkötés nitrogénatomjának az aszparaginsav szabad karboxilcsoportjával végzett intramolekuláris acilezése során szukcinimid gyűrű képződése miatt megy végbe [7] .
Az aminosav nyomelemzés kifejlesztésével a D-aminosavakat először egyes baktériumok sejtfalában ( 1966 ) , majd magasabb rendű élőlények szöveteiben találták meg [8] . Így a D-aszpartát és a D-metionin feltehetően neurotranszmitterek emlősökben [9] .
Egyes peptidek poszttranszlációs módosításból származó D-aminosavakat tartalmaznak . Például a D - metionin és a D - alanin a dél-amerikai kétéltű phyllomedusa bőrében lévő opioid heptapeptidek ( dermorfin , dermenkefalin és deltorfin ) alkotórészei. A D-aminosavak jelenléte meghatározza ezeknek a peptideknek a fájdalomcsillapítóként való magas biológiai aktivitását .
Hasonlóképpen bakteriális eredetű peptid antibiotikumok képződnek, amelyek a gram-pozitív baktériumok - nizin , szubtilin és epidermin - ellen hatnak [10] .
A D-aminosavak sokkal gyakrabban a peptidek és származékaik részét képezik, amelyek gomba- és baktériumsejtekben nem riboszómális szintézis útján jönnek létre. Nyilvánvalóan ebben az esetben az L-aminosavak, amelyeket a peptidet szintetizáló enzimkomplex egyik alegysége izomerizál , szintén a szintézis kiindulási anyagaként szolgálnak .
A fehérje bioszintézis folyamatában a genetikai kód által kódolt 20 α-aminosav beépül a polipeptidláncba . Ezeken a proteinogénnek vagy standardnak nevezett aminosavak mellett egyes fehérjékben specifikus, nem szabványos aminosavak is találhatók , amelyek standard aminosavakból származnak a transzláció utáni módosítások folyamatában. A közelmúltban a transzlációs úton beépült szelenociszteint (Sec, U) és pirrolizint (Pyl, O) [11] [12] néha proteinogén aminosavnak tekintik . Ezek az úgynevezett 21. és 22. aminosavak [13] .
Megoldatlan maradt a kérdés, hogy miért pont ez a 20 aminosav lett „kiválasztott” [14] . Nem teljesen világos, hogy ezek az aminosavak miért bizonyultak előnyösebbnek más hasonlókkal szemben. Például a treonin , izoleucin és metionin bioszintetikus útvonalának egyik kulcsfontosságú köztes metabolitja az α-aminosav homoszerin. Nyilvánvaló, hogy a homoszerin egy nagyon ősi metabolit , de a treonin , izoleucin és metionin esetében léteznek aminoacil-tRNS szintetázok , tRNS -ek , de a homoszerin esetében nem.
A 20 proteinogén aminosav szerkezeti képletét általában az úgynevezett proteinogén aminosav táblázat formájában adjuk meg :
Aminosav | 3 betűs [15] | 1 betűs [15] | aminosavak | emlékezeterősítő
szabály [16] |
Polaritás [17] | radikális | úr | Vw_ _
(Å 3 ) |
pi | hidrofób skála [18] | gyakoriság a fehérjékben (%) [19] |
---|---|---|---|---|---|---|---|---|---|---|---|
glicin | gly | G | GGU, GGC, GGA, GGG | glicin_ _ | nem poláris | Alifás | 75.067 | 48 | 6.06 | −0,4 | 7.03 |
Alanin | Ala | A | GCU, GCC, GCA, GCG | Egy lanin | nem poláris | Alifás | 89.094 | 67 | 6.01 | 1.8 | 8.76 |
Valine | Val | V | GUU, GUC, GUU, GUG | V aline | nem poláris | Alifás | 117.148 | 105 | 6.00 | 4.2 | 6.73 |
Izoleucin | ile | én | AUU, AUC, AUA | szuleucinzom _ | nem poláris | Alifás | 131,175 | 124 | 6.05 | 4.5 | 5.49 |
Leucin | Leu | L | UUA, UUG, CUU, CUC, CUA, CUG | L eucin | nem poláris | Alifás | 131,175 | 124 | 6.01 | 3.8 | 9.68 |
Prolin | Pro | P | CCU, CCC, CCA, CCG | prolin_ _ | nem poláris | Heterociklikus | 115.132 | 90 | 6.30 | −1.6 | 5.02 |
Derűs | Ser | S | UCU, UCC, UCA, UCG, AGU, AGC | S erine | Poláris | Oximono-aminokarbonsav | 105.093 | 73 | 5.68 | −0,8 | 7.14 |
Treonin | Thr | T | ACU, ACC, ACA, ACG | Treonin_ _ | Poláris | Oximono-aminokarbonsav | 119.119 | 93 | 5.60 | −0,7 | 5.53 |
cisztein | Cys | C | UGU, UGC | C isztein | Poláris | Kén | 121.154 | 86 | 5.05 | 2.5 | 1.38 |
metionin | Találkozott | M | AUGUSZTUS | metionin_ _ | nem poláris | Kén | 149.208 | 124 | 5.74 | 1.9 | 2.32 |
aszparaginsav | áspiskígyó | D | GAU, GAC | spár Dinsav _ | Poláris
|
negatív töltésű | 133.104 | 91 | 2.85 | −3.5 | 5.49 |
Aszparagin | Asn | N | AAU, AAC | spárga N e | Poláris | Amidok | 132.119 | 96 | 5.41 | −3.5 | 3.93 |
Glutamin | Glu | E | GAA, GAG | ragasztó taminsav _ | Poláris
|
negatív töltésű | 147.131 | 109 | 3.15 | −3.5 | 6.32 |
Glutamin | Gln | K | CAA, CAG | Q -tamin | Poláris | Amidok | 146.146 | 114 | 5.65 | −3.5 | 3.9 |
Lizin | Lys | K | AAA, AAG | L előtt | Poláris | pozitív töltésű | 146.189 | 135 | 9.60 | −3.9 | 5.19 |
Arginin | Arg | R | CGU, CGC, CGA, CGG, AGA, AGG | egy R ginin | Poláris | pozitív töltésű | 174.203 | 148 | 10.76 | −4.5 | 5.78 |
hisztidin | Övé | H | CAU, CAC | hisztidin _ | Poláris
töltött pozitívan |
Heterociklikus | 155.156 | 118 | 7.60 | −3.2 | 2.26 |
Fenilalanin | Phe | F | UUU, UUC | F enilalanin | nem poláris | aromás | 165.192 | 135 | 5.49 | 2.8 | 3.87 |
Tirozin | Tyr | Y | UAU, UAC | t Y rózsa | Poláris | aromás | 181.191 | 141 | 5.64 | −1.3 | 2.91 |
triptofán | trp | W | UGG | t W o gyűrűk | nem poláris | aromás,
Heterociklikus |
204.228 | 163 | 5.89 | −0,9 | 6.73 |
A lizin aminosav esetében mindkét osztályba tartoznak aminoacil-tRNS szintetázok.
Bioszintetikus útvonalak szerintA proteinogén aminosavak bioszintézisének útjai változatosak. Ugyanaz az aminosav különböző módon képződhet. Ráadásul a teljesen különböző utaknak nagyon hasonló szakaszai lehetnek. Mindazonáltal megtörténnek és indokoltak az aminosavak bioszintetikus útjaik szerinti osztályozására tett kísérletek . A következő bioszintetikus aminosavcsaládokat ismerik: aszpartát , glutamát , szerin , piruvát és pentóz . Egy adott aminosav nem mindig rendelhető egyértelműen egy adott családhoz; a korrekciókat konkrét szervezetekre és az uralkodó útvonal figyelembevételével végezzük. Az aminosavak családonként általában a következőképpen oszlanak meg:
A fenilalanint , tirozint , triptofánt néha izolálják a shikimata családban .
A szervezet azon képessége szerint, hogy szintetizáljon prekurzorokbólAz aminosavak esszenciális és nem esszenciális aminosavak osztályozása nem mentes a hátrányoktól. Például a tirozin csak akkor nem esszenciális aminosav, ha elegendő a fenilalanin. A fenilketonuriában szenvedő betegeknél a tirozin esszenciális aminosavvá válik. Az arginin az emberi szervezetben szintetizálódik, és nem esszenciális aminosavnak számít, de metabolizmusának egyes sajátosságai miatt a szervezet bizonyos élettani körülményei között esszenciális aminosavnak tekinthető. A hisztidin az emberi szervezetben is szintetizálódik, de nem mindig elegendő mennyiségben, ezért táplálékkal kell ellátni.
Az állatok katabolizmusának természete szerintAz aminosavak biológiai lebomlása többféleképpen mehet végbe.
Az állatok katabolizmusának termékeinek természete szerint a proteinogén aminosavakat három csoportra osztják:
Aminosavak:
A „milleri” aminosavak a Stanley L. Miller 1953 -as kísérletéhez közeli körülmények között nyert aminosavak általános elnevezése . Számos különböző aminosav racemátként való képződését állapították meg, többek között: glicin , alanin, valin , izoleucin , leucin , prolin , szerin , treonin , aszpartát , glutamát
Az orvostudományban számos olyan anyagot, amely képes ellátni az aminosavak bizonyos biológiai funkcióit, aminosavnak is nevezik:
Az aminosavak fontos jellemzője a polikondenzációs képességük, ami poliamidok képződéséhez vezet , beleértve a peptideket , fehérjéket , nylont , nylont , enantot [20] .
Az aminosavak a sporttáplálkozás és az összetett takarmány részét képezik . Az aminosavakat az élelmiszeriparban ízesítő adalékként használják , például a glutaminsav nátriumsóját [21] .
![]() | ||||
---|---|---|---|---|
Szótárak és enciklopédiák | ||||
|
A biokémiai molekulák fő csoportjai | |
---|---|
Aminosavak | |
---|---|
Alapértelmezett | |
nem szabványos | |
Lásd még |
A szerves vegyületek osztályai | |
---|---|
szénhidrogének | |
Oxigén tartalmú | |
Nitrogén tartalmú | |
Kén | |
Foszfor tartalmú | |
haloorganikus | |
szerves szilícium |
|
Szerves elem | |
További fontos osztályok |
perfúziós oldatok - ATC kód: B05 | Plazmapótló és||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
| ||||||||
| ||||||||
| ||||||||
| ||||||||
|