Georg Kantor | |
---|---|
Georg Ferdinand Ludwig Philipp Cantor | |
| |
Születési név | német Georg Ferdinand Ludwig Philipp Cantor |
Születési dátum | 1845. február 19. ( március 3. ) . |
Születési hely | Szentpétervár |
Halál dátuma | 1918. január 6. (72 évesen) |
A halál helye | Halle , Németország |
Ország | Német Birodalom |
Tudományos szféra | matematika |
Munkavégzés helye | Gall Egyetem |
alma Mater | Berlini Egyetem |
Akadémiai fokozat | PhD [1] ( 1867 ) és habilitáció ( 2008 ) |
tudományos tanácsadója | Ernst Kummer , Karl Weierstrass |
Ismert, mint | halmazelmélet megalkotója |
Díjak és díjak | Sylvester-érem (1904) |
Médiafájlok a Wikimedia Commons oldalon |
Georg Kantor ( német Georg Ferdinand Ludwig Philipp Cantor , 1845. március 3., Szentpétervár – 1918. január 6. , Halle (Saale)) - német matematikus , Weierstrass tanítványa . Leginkább a halmazelmélet megalkotójaként ismert . A Német Matematikai Társaság alapítója és első elnöke , kezdeményezője a Nemzetközi Matematikus Kongresszus létrehozásának .
Cantor először meghatározta a tetszőleges halmazok , köztük a végtelen halmazok összehasonlítását a „ számosságuk ” alapján (a mennyiség fogalmának általánosítása) a halmazok közötti egy-egy megfelelés fogalmán keresztül. A halmazokat számosságuk szerint osztályozta, meghatározta a bíbor- és sorszámok fogalmát , valamint a bíbor- és sorszámok aritmetikáját .
Cantor transzfinit számok elméletét eredetileg az ókori görögök által lefektetett évszázados hagyományok megsértésének tekintették, és tagadja a tényleges végtelent mint legális matematikai objektumot . Idővel Cantor halmazelmélete axiomatikus alapokra helyeződött, és a matematika alapjainak modern felépítésének sarokkövévé vált , matematikai elemzésen , topológián , funkcionális elemzésen , mértékelméleten és a matematika sok más ágán alapul.
Kantor 1845- ben született Szentpéterváron a nyugati kereskedők kolóniáján, és tizenegy éves koráig ott nőtt fel. Atya - Georg-Voldemar Kantor (1814, Koppenhága - 1863, Frankfurt ) - Amszterdamban letelepedett portugál zsidóktól származott, evangélikus vallású dán alattvaló volt , bróker a szentpétervári tőzsdén . Apám rokonai közül sokan régóta Szentpéterváron élnek, kezdve a dédapámmal. Apám unokatestvére a híres orosz polgári jogász, D. I. Meyer . Az orosz dokumentumokban Georg-Voldemar Kantort Jegor Jakovlevics Kantornak hívták. Anya - Maria-Anna Böhm (1819, Szentpétervár - 1896, Berlin) - a híres magyar-orosz hegedűművész, Josef Böhm unokahúga . A matematikus anyai nagyapja, Franz Böhm (1788-1846) szintén hegedűművész volt. 1850 óta a 29 éves P. L. Csebisev [2] [3] ugyanabban a házban (11. sor, 24. ház) telepedett le a Vasziljevszkij-szigeten , ahol a Kantor család élt .
George volt az elsőszülött, a legidősebb a hat gyermek közül. Hegedűvirtuózként játszott, jelentős művészi és zenei tehetségeket örökölt szüleitől. A családapa 1851-ben így írt fiáról: "A természettől megajándékozott a rend iránti vágy, amely minden mást felülmúl." 1853-ban Georg belépett Petrishulába . Amikor az apa megbetegedett, a család enyhébb éghajlattal számolva 1856-ban Németországba költözött: először Wiesbadenbe , majd Frankfurtba [3] .
1860-ban Georg kitüntetéssel végzett a darmstadti reáliskolában ; tanárok megjegyezték kivételes képességeit a matematikában, különösen a trigonometriában . 1862 - ben belépett a zürichi Szövetségi Politechnikai Intézetbe . Egy évvel később apja meghalt; Miután szilárd örökséget kapott, Georg átigazolt a berlini Humboldt Egyetemre , ahol olyan híres tudósok előadásait kezdett el látogatni, mint Leopold Kronecker , Karl Weierstrass és Ernst Kummer . 1866 nyarán a göttingeni egyetemen , az akkori matematikai gondolkodás legnagyobb központjában töltötte. 1867-ben a Berlini Egyetem Ph.D. fokozattal tüntette ki a számelméleti „ De aequationibus secundi gradus indeterminatis ” című munkájáért.
A Berlin School for Girls-ben eltöltött rövid tanári munka után Kantor a galliai Martin Luther Egyetemen kapott helyet , ahol egész karrierjét töltötte. Számelméleti szakdolgozatához megkapta a tanításhoz szükséges habilitációt . 1872-ben Kantor találkozott Richard Dedekinddel , aki közeli barátja és munkatársa lett. Cantor sok ötletét megvitatták Dedekinddel folytatott levelezésben.
Kantor egy 1872-es cikkében a valós számok elméletének alátámasztásának egy változatát adta meg [4] . Modelljében a valós számot racionális számok alapvető sorozatainak osztályaként határozzák meg [5] . Az " Univerzális aritmetika " korábban elfogadott newtoni definíciójától eltérően Cantor megközelítése tisztán matematikai volt, nem utalt geometriára vagy más mérési eljárásokra. Egy másik, szintén tisztán matematikai változatot ugyanebben az évben adott ki a Dedekind (ez a " Dedekind szakaszokon " alapult , lásd Valós szám meghatározásának konstruktív módszerei ) [6] .
1874-ben Kantor feleségül vette Vally Guttmannt ( németül: Vally Guttmann ). 6 gyermekük született, az utolsó 1886-ban született (4 lány és két fiú). A szerény akadémiai fizetés ellenére Kantor az apjától kapott örökségnek köszönhetően kényelmes megélhetést tudott biztosítani a családnak. Az életrajzírók megjegyzik, hogy Kantor még a Harz-hegységben töltött nászútja alatt is sok időt töltött matematikai beszélgetésekkel barátjával, Dedekinddel. Ugyanebben 1874-ben Kantor publikált egy cikket a Krell Journalban, amelyben bemutatta a halmaz számosságának fogalmát, és megmutatta, hogy annyi racionális szám van, ahány természetes szám , és sokkal több valós szám (a Weierstrass, ezt a forradalmi következtetést lágyította a cikk) [7] .
Kantort 1872-ben adjunktussá adták, 1879-ben pedig rendes professzor lett. Nagy eredmény volt 34 évesen megkapni ezt a címet, de Kantor egy rangosabb egyetemről álmodozott, például Berlinben - akkoriban Németország vezető egyetemén, de elméleteit komoly kritika érte, és a nem volt lehetséges az átmenet másik helyre [8] .
1877-ben Cantor megdöbbentő eredményt ért el, amelyről Dedekindnek írt levelében beszámolt: egy szakasz és egy négyzet pontjainak sokfélesége ( kontinuum ) azonos a szakasz hosszától és a szakasz szélességétől függetlenül. négyzet. Ugyanakkor megfogalmazta és sikertelenül próbálta bizonyítani a „ kontinuum hipotézist ”. Kantor első, ezeket a kulcsfontosságú eredményeket bemutató írása 1878-ban jelent meg, és „A fajták tanáról” címet viselte (a „fajta” kifejezést később a Cantor a „készlet”-re cserélte). A cikk megjelenését a felháborodott Kronecker kérésére többször elhalasztották , aki a berlini egyetem matematikai tanszékét vezette [9] . A konstruktív matematika előfutáraként számon tartott Kronecker ellenséges volt Cantor halmazelméletével szemben, mivel annak bizonyításai gyakran nem építő jellegűek, konkrét példák megalkotása nélkül; Kronecker abszurdnak tartotta a tényleges végtelen fogalmát.
Kantor rájött, hogy Kronecker pozíciója még a galliai egyetem elhagyását sem teszi lehetővé. Maga Kantor is azon a véleményen volt, mint a kortárs matematikusok többsége: minden konzisztens matematikai objektumot érvényesnek és létezőnek kell tekinteni [10] .
Cantor halmazelméletét számos híres kortárs matematikus – Henri Poincaré [11] – éles kritika érte ; később Hermann Weyl és Leutzen Brouwer (lásd Viták Cantor elméletéről ). Emlékeztettek arra, hogy Cantor előtt a matematika összes fényesei Arisztotelésztől Gaussig elfogadhatatlan tudományos fogalomnak tartották a tényleges végtelent [12] . A helyzetet súlyosbította a káros ellentmondások halmazai elméletének első változatának felfedezése . A kritika olykor nagyon agresszív volt: például Poincaré a "kántorizmust" súlyos betegségnek nevezte, amely a matematikai tudományt sújtotta, és reményét fejezte ki, hogy a jövő nemzedékei kigyógyulnak belőle [13] ; Kronecker nyilvános nyilatkozataiban és Kantor elleni személyes támadásaiban pedig olykor olyan jelzők villantak fel, mint „tudományos sarlatán”, „hitehagyott” és „az ifjúság megrontója” [11] .
Néhány kiemelkedő matematikus éles kritikáját a világhír és mások jóváhagyása ellenezte. 1904-ben a Londoni Királyi Társaság Kantornak ítélte oda legmagasabb matematikai kitüntetését, a Sylvester Medalt [14] . Maga Kantor úgy gondolta, hogy a transzfinit számok elméletét felülről közölték vele [15] . Bertrand Russell a halmazelméletet "korszakunk egyik legnagyobb sikereként" dicsérte, David Hilbert pedig "matematikai zseninek" nevezte Cantort, és kijelentette: "Senki sem űzhet ki minket a Cantor által teremtett paradicsomból" [16] .
1881-ben meghalt kántor kollégája, Eduard Heine , és egy betöltetlen pozíciót hagyott hátra. Az egyetem vezetése elfogadta Kantor ajánlatát Richard Dedekind, Heinrich Weber vagy Franz Mertens (ebben a sorrendben) meghívására erre a posztra, de Kantor legnagyobb bánatára mindannyian visszautasították. Ennek eredményeként a posztot Friedrich Wangerin vette át . 1882-ben Cantor kommunikációja megszakadt Dedekinddel, valószínűleg azért, mert neheztelt, mert ez utóbbi megtagadta hallei posztját [17] .
1883-ban Kantor egy kulcsfontosságú cikket publikált "A fajták általános tanának alapjai" [18] [19] című munkájában . Ezzel egy időben aktív levelezést kezdett Gösta Mittag-Lefflerrel , az akkori Svédországban élt kiemelkedő matematikussal, és hamarosan publikálni kezdett Acta mathematica folyóiratában . 1885-ben azonban Mittag-Leffler megriadt a filozófiai felhangok és az új terminológia miatt egy cikkben, amelyet Cantor küldött neki közzététel céljából [20] , és arra kérte Cantort, hogy vonja vissza cikkét, amíg az még lektorálás alatt áll, és azt írta, hogy a cikk " körülbelül évekkel megelőzte korát". száz." Kantor beleegyezett, hogy visszavonja a cikket, de soha többé nem publikált az Acta Mathematicában [21] [22] , és hirtelen megszakította kapcsolatait és levelezését Mittag-Lefflerrel. Kantor megkezdte a depresszió első időszakát, és több mint öt évig Kantor néhány filozófiai cikket leszámítva nem publikált semmit, és a tanításra szorítkozott [23] .
Nem sokkal a helyreállítás után (1889) Cantor azonnal számos fontos kiegészítést tett elméletéhez, különösen bebizonyította a természetes számok összes részhalmazának megszámlálhatatlanságát átlós módszerrel, de soha nem érte el azt a magas termelékenységi szintet, mint 1874-1884-ben volt. Végül egy békeajánlattal fordult Kroneckerhez, amit ő kedvezően fogadott el. Az őket elválasztó filozófiai különbségek és nehézségek azonban megmaradtak. Eközben néhány matematikus, különösen a fiatalok, elfogadták a halmazelméletet, elkezdték fejleszteni és alkalmazni különféle problémák megoldására. Köztük van Dedekind, Hilbert, Felix Bernstein , Henri Lebesgue , Felix Klein , Adolf Hurwitz , Ernst Zermelo , N. N. Luzin és mások.
1890-ben Kantor segített megszervezni a Német Matematikai Társaságot ( németül Deutsche Mathematiker-Vereinigung ), és elnöke volt annak első kongresszusán, 1891 -ben Hallében ; akkoriban még Kronecker ellenkezése ellenére is nagyon stabil volt a hírneve, ennek eredményeként Kantort választották a társaság első elnökévé. Kantor meghívta Kroneckert, hogy tartson előadást, de felesége tragikus halála miatt nem tudta elfogadni az ajánlatot.
1884-től Kantor korának végéig rendszeresen visszatérő depressziós rohamok egy ideig kortársait hibáztatták túlzottan agresszív álláspontra [24] , de ma már úgy gondolják, hogy ezek a rohamok nagy valószínűséggel mentális betegségek kialakulásához vezethetnek [11]. ] .
Egy 1892-es cikk mutatta be először Cantor híres átlós módszerét . Az utolsó munka, a tudós egyfajta testamentuma, a "A transzfinit halmazok tanának igazolásáról" című cikk volt (két részben, 1895-1897). Ez Cantor egyik leghíresebb munkája, amelyben a halmazelmélet korábbi eredményei mellett az alefák hierarchiáját is felépítették [25] .
1897-ben Cantor intenzív levelezést kezdett Hilberttel a halmazelméletben felfedezett első ellentmondásról, a Burali-Forti paradoxonról , amely rendkívül aggasztotta Hilbertet. Kantor azt a véleményét fejezte ki, hogy a halmazelméletben kétféle fogalmat kell megkülönböztetni - a transzfinit és az abszolút (ahogyan ő fogalmazott „hozzáférhetetlen”) fogalmak között, amelyek közül csak az első alkalmas az emberi értelem számára, a második pedig csak megértésük közelítése lehetséges. Ez a metafizika nem győzte meg Hilbertet, véleménye szerint megoldhatatlan matematikai problémák nincsenek és nem is lehetnek. A vita két évig tartott, és semmivé lett. A paradoxonok megoldására (amelyek azonban nem váltak általánosan elfogadottá) csak 30 évvel később találtak megoldást, miután Cantor „naiv halmazelméletét” egy axiomatikusra cserélték , amely kizárta a „hozzáférhetetlen” halmazokat a jogi fogalmak sorából. [26] .
1899 decemberében Kantor 13 éves fia meghalt. Kantor mentális betegsége súlyosbodott, a „Transzfinit halmazok tanának igazolásáról” című cikk majdnem kész harmadik része soha nem készült el. 1913-ig Kantor az egyetemen tanított (időnként hosszú szünetet tartott a kezelés miatt), majd nyugdíjba vonult. Érdeklődése 1899 után főként Leibniz filozófiája és Shakespeare drámái szerzőségének kérdése volt , amely Kantort már évek óta lenyűgözte.
Georg Kantor 1918. január 6-án halt meg szívrohamban egy hallei pszichiátriai kórházban.
Tematikus oldalak | ||||
---|---|---|---|---|
Szótárak és enciklopédiák | ||||
Genealógia és nekropolisz | ||||
|
fraktálok | ||
---|---|---|
Jellemzők | ||
A legegyszerűbb fraktálok | ||
furcsa vonzerő | Multifraktál | |
L-rendszer | Térkitöltő görbe | |
Bifurkációs fraktálok | ||
Véletlenszerű fraktálok | ||
Emberek | ||
Kapcsolódó témák |