1729 (szám)

1729
ezerhétszázhuszonkilenc
← 1727 1728 1729  1730 1731  →
Faktorizáció 7 13 19
római jelölés MDCCXXIX
Bináris 11011000001
Octal 3301
Hexadecimális 6C1
 Médiafájlok a Wikimedia Commons oldalon

Az 1729 ( ezerhétszázhuszonkilenc ) természetes szám 1728 és 1730 között . Nem prímszám , de a prímszámok sorozatához képest 1723 és 1733 között található [1] . Más néven Ramanujan - Hardy szám .

A matematikában

Ez a szám elsősorban egy történelmi anekdotából ismert G. H. Hardy Apology for a Mathematician című művében . Amikor Hardy meglátogatta Ramanujant a kórházban , azt mondta, hogy a beszélgetést azzal kezdte, hogy "panaszkodva" ült egy unalmas, 1729-es taxiban. Ramanujan izgatott lett, és felkiáltott: „Hardy, miért, Hardy, ez a legkisebb természetes szám, amely kétféleképpen ábrázolható kockák összegeként!”. Ezek a módszerek a következők: 1729 = 1 3 + 12 3 = 9 3 + 10 3 [2] [3] [4] .

Ebben a vonatkozásban az 1729-es számot néha Ramanujan-Hardy számnak is nevezik [5] . Két, kockaösszegként ábrázolt ábrázolását azonban Bernard Frenicle de Bessy fedezte fel, és 1657-ben publikálta. [6]

Az 1729-es szám a következő érdekes számsorokban is szerepel:

Tizedes jelölés tulajdonságai

Jegyzetek

  1. Az 1729-es szám tulajdonságai archiválva 2020. augusztus 27-én a Wayback Machine en.numberempire.com webhelyen
  2. S. G. Gindikin . Történetek fizikusokról és matematikusokról . - harmadik kiadás, bővítve. - M .: MTSNMO , 2001. - ISBN 5-900916-83-9 .
  3. Lamberto Garcia del Cid. A számtan szempontjából érdekes számok → 1729 // Figyelemre méltó számok. Zero, 666 és egyéb vadállatok. - DeAgostini, 2014. - T. 21. - S. 16-17, 54. - 60 p. — (Matematika világa). - ISBN 978-5-9774-0716-8 .
  4. Joe Roberts. Integer 1729 // Lure of the Integers  (angol) . - MAA , 1992. - P.  263 -264. — ISBN 0-88385-502-X .
  5. OEIS sorozat A011541 : taxiszámok vagy Hardy-Ramanujan számok: a legkisebb szám, amely két természetes szám kocka összegeként n módon ábrázolható . // Taxi-, taxi- vagy Hardy-Ramanujan számok: a legkisebb szám, amely 2 pozitív integrálkocka összege n módon.
  6. Thomas Ward, G. Everest. Bevezetés a számelméletbe  . - London: Springer Science + Business Media , 2005. - P.  117-118 . — ISBN 9781852339173 .
  7. OEIS sorozat A002997 : Carmichael-számok: olyan n összetett számok , amelyeknél egy n-1 ≡ 1 ( mod n) minden n -re írt másodpróba esetén . // Carmichael-számok: olyan n összetett számok, amelyekre a^(n-1) == 1 (mod n) minden a kopprímhez n-hez.
  8. [https://web.archive.org/web/20161221163829/https://oeis.org/A110921 Archiválva : 2016. december 21., a Wayback Machine Encyclopedia of Integer Sequences ] A110921

Irodalom

Linkek