A napkitörés egy robbanásszerű energiafelszabadulási folyamat (kinetikai, fény- és termikus) a Nap légkörében . A fáklyák így vagy úgy lefedik a nap légkörének minden rétegét: a fotoszférát , a kromoszférát és a Nap koronáját . A napkitöréseket gyakran, de nem mindig, koronális tömeg kilökődés kíséri . Egy erős napkitörés energiafelszabadulása elérheti a 6×10 25 joule -t, ami a Nap által másodpercenként felszabaduló energia körülbelül 1⁄6-a, vagyis 160 milliárd megatonna TNT , ami összehasonlításképpen a világ hozzávetőleges mennyisége. villamosenergia-fogyasztás több mint 1 millió év.
Mágneses tér hatására a napplazma váratlan összenyomódása következik be, plazmaköteg vagy szalag képződik (hosszuk tíz- vagy százezer kilométert is elérhet), ami robbanáshoz vezet. A napplazma ebben a régióban 10 millió K nagyságrendű hőmérsékletre hevíthető. A koronában mozgó és a bolygóközi térbe 1000 km/s sebességgel távozó anyagok kilökődésének kinetikus energiája megnő. További energiát kapnak, és az elektronok, protonok és más töltött részecskék áramlása jelentősen felgyorsul. Az optikai, röntgen-, gamma- és rádiósugárzás felerősít. [egy]
A fáklyából származó fotonok körülbelül 8,5 perccel a kezdete után érik el a Földet; majd néhány tíz percen belül erőteljes töltött részecskék folyamai érik el, a napkitörésből származó plazmafelhők pedig csak két-három nap múlva érik el bolygónkat.
A napkitörések impulzív fázisának időtartama általában nem haladja meg a néhány percet, és az ezalatt felszabaduló energia mennyisége elérheti a több milliárd megatonna TNT -t . A villanásenergiát az elektromágneses hullámok látható tartományában hagyományosan a H α hidrogénemissziós vonalban lévő izzási terület szorzata határozza meg , amely az alsó kromoszféra felmelegedését jellemzi, és ennek a ragyogásnak a fényessége, amely a fénysugár erejével függ össze. forrás.
Az elmúlt években a 0,5–10 keV ( 0,5–8 hullámhosszúságú) hőröntgen -kitörés amplitúdójának egy sor műholdon végzett járőrözésen alapuló osztályozása , főleg GOES [2] . angstroms ) is gyakran használatos. Az osztályozást 1970-ben D. Baker javasolta, és eredetileg a Solrad műholdak mérésein alapult [3] . E besorolás szerint a napkitöréshez pontszámot rendelnek - egy latin betű jelölését és egy indexet utána. A betű A, B, C, M vagy X lehet attól függően, hogy mekkora a röntgensugár intenzitási csúcsa, amelyet a fáklya elért [4] [Comm 1] :
Levél | Csúcsintenzitás (W/ m2 ) |
---|---|
A | kevesebb, mint 10-7 |
B | 1,0×10 −7 -től 10 −6 -ig |
C | 1,0 × 10 -6 -tól 10 -5 -ig |
M | 1,0×10 −5 -től 10 −4 -ig |
x | több mint 10-4 |
Az index a villanás intenzitásának értékét határozza meg, és 1,0 és 9,9 között lehet az A, B, C, M és több betű esetén – az X betű esetén. Például az M8.3 2010. február 12-i kitörése megfelel a 8 3×10 −5 W/m 2 csúcsintenzitás . Az 1976 óta regisztrált legerősebb ( 2010 -es állapotú ) fáklya, amely 2003. november 4-én történt , X28-as pontszámot kapott [6] , így a röntgensugárzás intenzitása a csúcson 28 × 10 volt. −4 W/m 2 . A Nap röntgensugárzásának regisztrálása, mivel azt a Föld légköre teljesen elnyeli, a Szputnyik-2 űrszonda megfelelő berendezéssel történő első fellövése óta lehetséges [7] , ezért a napsugárzás intenzitásáról szóló adatok a napkitörések röntgensugárzása 1957 -ig teljesen hiányzik.
A különböző hullámhossz-tartományokban végzett mérések a fáklyák különböző folyamatait tükrözik. Ezért a két fáklyaaktivitási mutató között csak statisztikai értelemben létezik összefüggés, így az egyes eseményeknél az egyik index lehet magas, a másik alacsony, és fordítva.
A napkitörések általában az ellenkező mágneses polaritású napfoltok közötti kölcsönhatási pontokon, pontosabban az északi és déli polaritású régiókat elválasztó mágneses semleges vonal közelében fordulnak elő. A napkitörések gyakorisága és ereje a 11 éves napciklus fázisától függ .
A napkitörések gyakorlati jelentőséggel bírnak például egy ritka atmoszférájú égitest felületének elemi összetételének vizsgálatában, vagy ennek hiányában az űrhajók fedélzetére szerelt röntgenfluoreszcencia spektrométerek röntgensugár gerjesztőjeként működnek. . Az ionoszféra kialakulásáért a fő tényező a kemény ultraibolya és röntgen fáklya sugárzás, amely a felső légkör tulajdonságait is jelentősen megváltoztathatja: sűrűsége jelentősen megnő, ami a műholdpálya magasságának gyors csökkenéséhez vezet. . A napkitörések során a töltött részecskék legerősebb áramlása gyakran károsítja a műholdakat, és balesetekhez vezet [8] [9] . A modern, főleg CMOS elemeket tartalmazó elektronika napkitörései során a károsodás valószínűsége nagyobb, mint a TTL, mivel a meghibásodást okozó részecskék küszöbenergiája kisebb. Az ilyen részecskék nagy károkat okoznak az űrhajók napelemeiben is [10] . A fáklyák során kilökődő plazmafelhők geomágneses viharok kialakulásához vezetnek , amelyek bizonyos módon befolyásolják a technológiát és a biológiai objektumokat.
A napkitörések modern előrejelzését a Nap mágneses mezőinek elemzése alapján adjuk meg. A Nap mágneses szerkezete azonban annyira instabil, hogy jelenleg még egy hétre előre sem lehet megjósolni a kitörést. A NASA nagyon rövid, 1-3 napos időszakra ad előrejelzést: csendes napokon a Napon általában 1-5%-os tartományban jelzik az erős kitörés valószínűségét, aktív időszakban pedig csak 30-ra nő. –40% [11] .
A napkitörések erejének mérését a röntgentartományban 1975 óta végzik a GOES műholdak segítségével . Az alábbi táblázat a 30 legerősebb fáklyát mutatja 1975 óta ezen műholdak szerint [12] .
dátum | Erő, X | jegyzet |
---|---|---|
2003.11.04 | 28,0 [6] | A naptevékenység 23. ciklusának legerősebb kitörése |
2001.02.04 | 20.0 | |
1989.08.16 | 20.0 | A naptevékenység 22. ciklusának legerősebb kitörése |
2003.10.28 | 17.2 | "Halloween" járvány |
2005.09.07 | 17.0 | |
1989.03.06 | 15.0 | |
1978.07.11 | 15.0 | A naptevékenység 21. ciklusának legerősebb kitörése |
2001.04.15 | 14.4 | |
1989.10.19 | 13.0 | |
1984.04.24 | 13.0 | |
1982.12.15 | 12.9 | |
1991.06.15 | 12.0 | |
1991.06.11 | 12.0 | |
1991.06.06 | 12.0 | |
1991.06.04 | 12.0 | |
1991.06.01 | 12.0 | |
1982.06.06 | 12.0 | |
1984.05.20 | 10.1 | |
1982.12.17 | 10.1 | |
2003.10.29 | 10.0 | |
1991.06.09 | 10.0 | |
1991.01.25 | 10.0 | |
1989.09.29 | 9.8 | |
1982.07.09 | 9.8 | |
1997.11.06 | 9.4 | |
1991.03.22 | 9.4 | |
2017.09.06 | 9.3 | A naptevékenység 24. ciklusának legerősebb kitörése (a 2673-as napfoltcsoportból) [13] |
1990.05.24 | 9.3 | |
2006.12.05 | 9.0 | |
1992.11.02 | 9.0 |
Hatalmas napviharok ( Miyake Events ) Kr.e. 660 körül fordultak elő. e., 774-775 és 993-994 [ [14] [15] .
Szótárak és enciklopédiák | |
---|---|
Bibliográfiai katalógusokban |
|
Nap | ||
---|---|---|
Szerkezet | ||
Légkör | ||
Kiterjesztett szerkezet | ||
A Naphoz kapcsolódó jelenségek | ||
Kapcsolódó témák | ||
Spektrális osztály : G2 |