Whitehead gravitációs elmélete

Whitehead  gravitációs elmélete A. Whitehead angol matematikus és filozófus által 1922-ben kidolgozott gravitációs elmélet. Az alternatív gravitációs elméletek számára utal .

Az elmélet főbb jellemzői

Clifford Will kanadai fizikus szerint Whitehead elmélete a priori geometriai konstrukciókon alapul [1] , ezzel ellentétes álláspontot fogalmazott meg Dean Fowler, aki úgy vélte, hogy ez ellentmond Whitehead természetfilozófiájának: Whitehead számára a geometriai szerkezet Az Univerzum az objektumok közötti tényleges kapcsolatokból "nő ki". Whitehead gravitációs elmélete Fowler szerint egy alternatíva, matematikailag egyenértékű az általános relativitáselmélettel [2] .

A Whitehead-elmélet Will által bemutatott értelmezése szerint (és viszont D. Sing ír matematikus [3] [4] értelmezése által generált Whitehead-elmélet ) ennek az elméletnek van egy különös tulajdonsága, mégpedig Whitehead szerint. , az elektromágneses hullámok nulla geodéziai vonalak mentén terjednekfizikai téridő , míg a gravitációs hullámok a Minkowski térmetrikus tenzor által ábrázolt sík nulla geodéziai vonalai mentén terjednek . A gravitációs potenciál teljes mértékben leírható a metrikus tenzor által reprezentált sík hullámaival, hasonlóan a Maxwell-egyenletek Lienard-Wiechert potenciáljához .

A kozmológiai állandót úgy lehet bevezetni, hogy az alapmetrikát de Sitter vagy anti-de Sitter mérőszámra változtatjuk , ezt először D. Temple javasolta 1923-ban [5] . D. Temple megközelítését K. Reiner bírálta 1955-ben [6] [7] .

Whitehead elméletének tesztelése

A vákuumban lévő ponttömegre vonatkozó Whitehead-elmélet ekvivalens a Schwarzschild-metrikával [8] , tehát ugyanazok a következmények származnak belőle, mint az általános relativitáselméletből ( gravitációs vöröseltolódás , fényeltolódás, Merkúr-perihélium eltolódás , Shapiro-effektus ), ill. évtizedekig az általános relativitáselmélet életképes versenytársának tekintette a tudományos közösséget.

1971-ben C. Will felfedezte [9] , hogy Whitehead elmélete megjósolja a Földön az óceánok árapályával kapcsolatos jelenségeket ( Jim Peebles javasolta neki ), amelyek óriási eltéréseket mutatnak a ténylegesen megfigyelt jelenségekkel (különösen, Whitehead elmélete "csillagdagályt" jósol). a Tejútrendszer gravitációs tere okozza , amelynek több százszor erősebbnek kell lennie, mint a nap- és holdapály), ami megcáfolja ezt az elméletet [10] . Mint már említettük, Will interpretációját Whitehead elméletére bírálta C. Fowler, aki azzal érvelt, hogy a galaxis reálisabb modelljével különféle árapály-előrejelzéseket lehet elérni [2] [11] .

1989-ben Whitehead elméletének új értelmezését javasolták, amely kiküszöböli a nem megfigyelhető "csillagárapály" [12] hatását, viszont egy új, nem megfigyelhető hatást – a Nordvedt-effektust – jósol..

Jelenleg az általános konszenzus az, hogy Whitehead elméletét eredeti formájában megfigyelések cáfolták [13] .

Jegyzetek

  1. Will, Clifford. Einstein a tűzvonalon  (angol)  // Physics Today  : magazin. - 1972. - 1. évf. 25 . - P. 23-29 . - doi : 10.1063/1.3071044 . — Iránykód .
  2. 12 Fowler , Dean. Whitehead relativitáselméletének cáfolata – kritikus válasz  (angol)  // Process Studies: folyóirat. — Vol. 4 , sz. 4 . - P. 288-290 . - doi : 10.5840/process19744432 . Archiválva az eredetiből 2013. január 8-án.
  3. Synge, John. AN Whitehead relativitáselmélete  (határozatlan) . – Baltimore: Marylandi Egyetem, 1951.
  4. Tanaka, Yutaka. Einstein és Whitehead – Einstein és Whitehead relativitáselméletének összehasonlítása  // Historia  Scientiarum : folyóirat. - 1987. - 1. évf. 32 . Az eredetiből archiválva: 2016. március 4.
  5. Temple, G. Középpálya a Hamilton-Jacobi módszerrel kezelt relativisztikus dinamikában  // Filozófiai Magazin  : folyóirat  . - 1924. - 1. évf. 6 . - P. 277-292 . doi : 10.1080 / 14786442408634491 .
  6. Rayner, C. A Whitehead relativitáselmélet alkalmazása nem statikus gömbszimmetrikus rendszerekre  // Proceedings of the Royal Society of London  : folyóirat  . - 1954. - 1. évf. 222 . - P. 509-526 . - doi : 10.1098/rspa.1954.0092 . - .
  7. Rayner, C. The Effects of Rotation in the Central Body on its Planetary Orbits after the Whitehead Theory of Gravitation  // Proceedings of the Royal Society of London  : folyóirat  . - 1955. - 1. évf. 232 . - 135-148 . o . - doi : 10.1098/rspa.1955.0206 . - .
  8. AS Eddington, Whitehead és Einstein képleteinek összehasonlítása. Nature 113:192 (1924)
  9. CM relativisztikus gravitációt a Naprendszerben. II. Anizotrópia a newtoni gravitációs állandóban  //  The Astrophysical Journal . - IOP Publishing , 1971. - Vol. 169 . — 141. o . - doi : 10.1086/151125 . - .
  10. Will, Clifford és Gibbons, Gary. " A Whitehead gravitációs elméletének többszörös haláláról archiválva 2017. január 24-én a Wayback Machine -nél ", be kell nyújtani a Studies In History and Philosophy Of Modern Physics (2006) című kiadványhoz.
  11. Bain, Jonathan. Whitehead gravitációs elmélete  (neopr.)  // Stud. Hist. Phil. Mod. Phys.. - 1998. - V. 29 , 4. sz . - S. 547-574 . Az eredetiből archiválva : 2015. december 22.
  12. Hyman, Andrew. " Whitehead elméletének új értelmezése ", 104B Il Nuovo Cimento 387 (1989).
  13. Will CM Az általános relativitáselmélet és a kísérlet szembeállítása  //  Living Reviews in Relativity. - 2014. - Kt. 17 , sz. 4 . - doi : 10.12942/lrr-2014-4 . — Iránykód . - arXiv : 1403.7377 . Az eredetiből archiválva : 2015. március 19.

Irodalom