August Ferdinand Möbius | |
---|---|
német August Ferdinand Mobius | |
Születési dátum | 1790. november 17. [1] [2] [3] |
Születési hely |
|
Halál dátuma | 1868. szeptember 26. [1] [2] (77 éves) |
A halál helye | |
Ország | |
Tudományos szféra | matematika , mechanika , csillagászat |
Munkavégzés helye | Pleisenburg obszervatórium |
alma Mater | Lipcsei Egyetem |
Akadémiai fokozat | PhD ( 1814 ) |
tudományos tanácsadója | Carl Brandan Mollweide |
Ismert, mint | a Möbius-szalag szerzője |
A Wikiforrásnál dolgozik | |
Médiafájlok a Wikimedia Commons oldalon |
August Ferdinand Möbius ( németül August Ferdinand Möbius , 1790 . november 17. Schulpforte , ma Szász-Anhalt – Lipcse , 1868 . szeptember 26. ) - német matematikus , mechanikus és elméleti csillagász [5] .
1790. november 17-én született a Schulpfort iskola területén, a szász választófejedelem udvarában ( Naumburg mellett ). Édesapja, Johann Heinrich Möbius ( németül Johann Heinrich Möbius ) ebben az iskolában tánctanári posztot töltött be [6] . Möbius édesanyja, Johanna Katharine Christiane Keil ( németül Johanne Katharine Christiane Keil ) Luther Márton [7] leszármazottja volt .
Az apa meghalt, amikor a fiú még három éves sem volt. Möbius általános iskolai tanulmányait otthon szerezte, és azonnal érdeklődést mutatott a matematika iránt. 1803 -tól 1809 - ig a schulpforti bentlakásos iskolában tanult , majd beiratkozott a lipcsei egyetemre . Az első hat hónapban a család ajánlásainak megfelelően jogot tanult, de aztán meghozta a végső döntést, hogy a matematikának és a csillagászatnak szenteli életét [6] . Az életrajzírók azt sugallják, hogy ezt a választást a híres csillagász és matematikus , K. B. Mollweide befolyásolta , aki az egyetemen tanított, akinek csillagászati előadásait Möbius hallgatta (matematikai előadásokat M. von Prasse , fizikából L. V. Gilbert ) [7] [8] .
1813-1814 között Möbius Göttingenben élt , ahol K. F. Gauss csillagászatról tartott egyetemi előadásait. Aztán elment Halle -ba, hogy részt vegyen JF Pfaff matematikus , Gauss tanárának előadásaiban [5] . Ennek eredményeként Möbius mindkét tudományban mélyreható ismereteket kapott [8] .
Eközben von Prasse 1814 -ben meghalt , és Mollweide követte őt a lipcsei egyetem matematikaprofesszoraként, meghagyva a csillagászprofesszori posztot. Möbius disszertációt írt a csillagászatról "Az állócsillagok bolygók általi okkultációjának kiszámításáról" ( lat. De computationibus fixarum stellarum per planetas ; megjelent 1815-ben), és a lipcsei egyetemen doktorált, majd 1815 elején sikeresen . elkerülte, hogy besorozzák a porosz hadseregbe. Megvédett - már matematikából - habilitációs tézist "A trigonometrikus egyenletek néhány sajátos tulajdonságairól" ( lat. De peculiaribus quibusdam aequationum trigonometricarum affectionibus ). 1816 tavaszán Möbius Mollweide ajánlására a lipcsei egyetem csillagászati tanszékének rendkívüli professzora lett [8] [9] .
1816 - tól eleinte csillagász-megfigyelőként, majd ( 1848 -tól) a Lipcsei Obszervatórium igazgatójaként (a Lipcse külvárosában, a Pleisenburg erődben található). Aktívan részt vett a csillagvizsgáló rekonstrukciójában és felszerelésében [6] .
Mollweide 1825 -ben halt meg . Mobius megpróbálta átvenni a helyét, de tanári hírneve nem volt jó, és az egyetem másik jelöltet választott. Később (miután megtudta, hogy Möbiust más egyetemekről is meghívták), a lipcsei egyetem vezetése 1844 -ben rendes csillagászprofesszori posztra léptette elő. Ekkorra Möbius matematikai kutatásai hírnevet hoztak neki a tudományos világban [7] [8] .
1868. szeptember 26-án Möbius meghalt [9] .
1858 -ban ( I. B. Listinggel szinte egyidőben ) megállapította az egyoldali felületek létezését, és ezzel összefüggésben vált híressé a Möbius szalag (Möbius szalag) feltalálójaként - a legegyszerűbb, nem tájolható kétdimenziós felület . határ , amely lehetővé teszi a háromdimenziós euklideszi térbe való beágyazást (és Listing, és Möbius nem tette közzé azonnal eredményét: az első 1861-ben, a második 1865-ben) [9] .
Szakmai környezetben Möbiust számos első osztályú geometriai (főleg projektív ), elemzési és számelméleti mű szerzőjeként ismerik [5] .
Möbius számos alapvetően új geometriai eredményt vázolt fel a "Baricentrikus kalkulus" ( 1827 ) [10] című főművében , amely kiemelkedő az eredetiség, a mélység és a matematikai ötletek gazdagsága [5] [9] . Ő lett a baricentrikus kalkulus megalapítója, az analitikus geometria azon ága, amely egy affin vagy euklideszi ponttér pontjain végzett algebrai műveleteket tanulmányozza . A 19. században a baricentrikus kalkulus nem sokat fejlődött [11] ; később azonban ez és különösen a Möbius által bevezetett baricentrikus koordináták különféle alkalmazásokra találtak (főleg a végeselemes módszerben [12] ) [13] [14] .
Möbius először vezette be a homogén koordinátákat és az analitikai tanulmányozási módszereket a projektív geometriában . Megkapta a görbék és felületek új osztályozását, kialakította a projektív transzformáció általános fogalmát, amelyet később róla neveztek el, és tanulmányozta a korrelatív transzformációkat. Először a 3. rendű térbeli algebrai görbéket vette figyelembe, és tanulmányozta tulajdonságaikat [15] . Poncelettől függetlenül Möbius eljutott a homológ figurák fogalmához (amit Möbius "kollineárisnak" nevezett), és ezeknek az alakoknak az ábrázolása általánosabb, mint Ponceleté [16] .
1840- ben , jóval a jól ismert négyszín-probléma előtt, Möbius hasonló problémát fogalmazott meg: fel lehet-e osztani egy országot öt részre úgy, hogy mindegyik résznek nem nulla határa van a többivel? Könnyen kimutatható, hogy ez lehetetlen [9] . Más topológiai vívmányok közül megemlítendő, hogy bevezette az unikurzális görbe fogalmát , vagyis a tollat a papírról való felemelése nélkül megrajzolható gráfot (más néven: Euler-gráf ) [17] .
Möbius munkája a mechanika területén a statikára vonatkozik . 1829 - ben publikált egy cikket [18] a következő tétel bizonyításával: „ha négy erő egyensúlyban van, akkor a kettőre épített tetraéder térfogata megegyezik a másik kettőre épített tetraéder térfogatával. .” Azt is bebizonyította, hogy bármely erőrendszer egyedi módon helyettesíthető hat erőből álló rendszerrel, amelynek hatásvonalai egy előre meghatározott tetraédert alkotnak [19] .
Möbius 1837- ben kiadott egy kétkötetes Statika kézikönyvet [20] , a 19. század első felének egyik legfontosabb statikai monográfiáját, amelyben az addig elért főbb eredményeket rendszerezték. Az anyag bemutatásakor a könyv szerzője mind a geometriai, mind az analitikai módszert alkalmazta, és nem egyszer hivatkozott geometriai illusztrációkra korábban analitikusan bizonyított tételekre, „mivel a térbeli objektumok tanulmányozása során a geometriai megfontolás lényegében egy vizsgálat, ezért a a legtermészetesebb, míg az elemző értelmezés nem volt elegáns, tőle idegen megjelölések alá rejti a tárgyat, és ezért kisebb-nagyobb mértékben szem elől tévesztjük” [21] .
Az említett kézikönyvben különösen Möbius számos, a rácsos elméletben alapvető fontosságú tételt határozott meg . Figyelembe véve a csuklópántokkal összekapcsolt rudak rendszerének egyensúlyi problémáját , megmutatta, hogy ahhoz, hogy ez a rendszer változatlan legyen, általános esetben legalább rudak szükségesek egy lapos rendszerhez és legalább rudak egy térbeli rendszerhez. (itt van a zsanérok teljes száma). Kivételes esetek is előfordulhatnak azonban, amikor a megadott számú rúd nem elegendő a rendszer abszolút merevségének biztosításához, és Möbius egy analitikus feltételt talált az ilyen kivételes esetek megvalósítására: az egyensúlyi egyenletrendszer determinánsát , amelyet a rendszer abszolút merevségére írtunk. A rácsos csomópontok eltűnnek [22] .
A csillagászat területén Möbius több jelentős munkát publikált az égi mechanikáról , a csillagászat alapelveiről és a bolygófogyatkozásokról; közülük a leghíresebb az "Az égi mechanika elemei" ( 1843 ) című mű [23] volt .
1820- ban Möbius feleségül vette Dorothea Christiane Juliane Rothe-t ( németül Dorothea Christiane Juliane Rothe ). Három fiuk született: August Theodor , a híres skandináv filológus , Paul Heinrich August ( németül: Paul Heinrich August Möbius , iskolai tanárként dolgozott, majd - a Szász-Coburg-Gotha Hercegség általános tanfelügyelője ), Karl Theodor ( németül . Carl Theodor Moebius , a Pénzügyminisztérium alkalmazottja ) - és lánya, Emilie Augusta Möbius ( németül Emilie Auguste Möbius , feleségül vette Heinrich Louis d'Arre csillagászt ) [7] .
Unokája , Paul Julius Möbius (1853-1907) neves pszichiáter és neurológus lett.
1907-ben Lipcsében egy utcát [24] és egy teret [25] neveztek el August Ferdinand Möbiusról . A 2000-ben felfedezett 28516 (Möbius) aszteroida [26] és a Holdon található Möbius kráter (a nevet a Nemzetközi Csillagászati Unió 1970- ben hagyta jóvá ) [27] is a tudós nevéhez fűződik .
A számelméletben a Möbius sorozat , a μ(n) Möbius-függvény és a Möbius-inverziós képletek [28] [29] Möbius nevéhez fűződik (az ezekkel a fogalmakkal kapcsolatos kulcsfontosságú eredményeket Möbius a [30] évben megjelent cikkében szerezte meg. 1832).
Tematikus oldalak | ||||
---|---|---|---|---|
Szótárak és enciklopédiák |
| |||
Genealógia és nekropolisz | ||||
|