Tejút | |
---|---|
Galaxy | |
Jellemzők | |
Típusú | Spirálgalaxis egy rúddal |
Tartalmazza | helyi csoport |
Abszolút magnitúdó (V) | −20,9 m _ |
Súly | (1–2)⋅10 12 M ☉ |
Sugár | 50 ezer St. év (16 kpc ) |
Tulajdonságok | A galaxis, amely tartalmazza a Földet és a teljes Naprendszert , valamint az összes szabad szemmel látható csillagot |
Információ a Wikidatában ? | |
Médiafájlok a Wikimedia Commons oldalon |
A Tejútrendszer ( Galaxis ) egy spirálgalaxis , amely a Földet és a Naprendszert tartalmazza . A Tejútrendszer csillagkorongjának sugara és a Galaxis sugara 16 kiloparszek . A Galaxis teljes tömegét, figyelembe véve a sötét anyagot , 1–2⋅10 12 M⊙ -ra becsülik . A Tejútrendszerben 100-400 milliárd csillag található , fényereje 2⋅10 10 L⊙ . Más spirálgalaxisokhoz képest a Tejút meglehetősen nagy tömeggel és nagy fényerővel rendelkezik. A Naprendszer a Galaxis középpontjától 7,5-8,5 kiloparszek távolságra található, és 220 km/s sebességgel mozog körülötte.
Minden szabad szemmel látható csillag galaxisunkhoz tartozik, de a "Tejút" kifejezést gyakran az éjszakai égbolt enyhén homályos sávjára alkalmazzák . Tekintettel arra, hogy a Föld a Tejútrendszeren belül van, Galaxisunk kívülről való pontos képe ismeretlen.
A galaxis legtöbb csillaga a galaktikus korongban összpontosul spirális karokkal . Közepes méretű dudort és közepesen kifejezett sávot is tartalmaz , és a morfológiai besorolás szerint SBbc vagy SABbc besorolású. Ezenkívül a Tejútrendszer korongját galaktikus halo veszi körül, amely kis arányban csillagokat és nagy mennyiségű feltételezett sötét anyagot tartalmaz . A Galaxis közepén egy szupermasszív fekete lyuk található .
A Tejútrendszerben a csillagkeletkezés üteme évi 1,6–2 M⊙ . Leegyszerűsített formában a Galaxis csillagpopulációja I. és II. populációra osztható . Az első viszonylag fiatal, nagy fémességű csillagokból áll , amelyek közel körkörös pályán mozognak, és lapos, forgó galaktikus korongot alkotnak . A második a régi csillagok, nehéz elemekben szegények, amelyek hosszúkás pályákon mozognak, és egy gömb alakú glóriát alkotnak, amely nem forog egészében, és egy dudor . A csillagközi gáz- és nyílt csillaghalmazok az I. populációba, míg a gömbhalmazok a II. Pontosabb a csillagpopuláció felosztása vastag és vékony korong alrendszereire, külön-külön halo és kidudorodásra. A galaxis különböző alrendszereinek dinamikája is eltérő: a laposabb alrendszerek gyorsabban forognak, és kisebb a sebességdiszperziójuk.
A Tejútrendszer a Galaxisok Helyi Csoportjába tartozik . A galaxis a második a csoportban méretét és csillagainak számát tekintve az Androméda-galaxis után , de a két galaxis tömege összehasonlítható. A galaxisnak több mint két tucat műholdgalaxisa van, amelyek közül a legnagyobb a Nagy és Kis Magellán-felhő . 4 milliárd év elteltével a Tejútrendszer és az Androméda galaxis ütközik és egyesül , ami egy elliptikus galaxis kialakulását eredményezi .
A Tejút az ókor óta ismert. 1610-ben Galileo Galilei felfedezte, hogy a Tejútrendszer szórt fényét nagyszámú halvány csillag hozza létre. Másfél évszázaddal később, 1784-1785-ben William Herschel tette először kísérletet galaxisunk méretének és alakjának meghatározására. Herschel arra a következtetésre jutott, hogy a Tejút egy lapos korong alakú, de nagymértékben alábecsülte az átmérőjét. 1917-ben Harlow Shapley először mutatta meg, hogy a Nap messze van galaxisunk középpontjától, és 1924-1925- ben Edwin Hubble be tudta bizonyítani, hogy az Univerzum nem korlátozódik a mi galaxisunkra. Galaxisunk tanulmányozásában fontos szerepet játszott az 1989-ben felbocsátott Hipparcos űrteleszkóp , amellyel nagyszámú csillag koordinátáit, megfelelő mozgását és távolságát mérték. 2013 óta ezt a feladatot a Gaia űrteleszkóp látja el .
A Tejútrendszer az ókor óta kulturális, vallási és filozófiai jelentőséggel bír a különböző népek körében. Maga a "Tejút" név a görög-római mitológiából származik . Az egyik legenda szerint Héra nem volt hajlandó szoptatni Zeusz törvénytelen gyermekeit . Egyszer, amíg Héra aludt, Hermész a mellkasához hozta Herkulest , és miután etetni kezdett, Hera felébredt és eltolta magától. A mellkasból kifröccsenő tej a Tejútrendszerbe fordult. Maga a "galaxis" szó is ehhez a mítoszhoz kapcsolódik, és más görögökből származik. Κύκλος Γαλαξίας , ami fordításban "tejes kört" jelent.
A Tejútrendszer egy spirálgalaxis , amely magában foglalja a Földet és a teljes Naprendszert . A Tejútrendszert Galaxisnak is nevezik – nagybetűvel [1] [2] [3] . A csillagászatnak a Tejútrendszer vizsgálatával foglalkozó ága a galaktikus csillagászat [4] .
A Tejútrendszer csillagkorongja a középponttól 16 kiloparszek távolságig terjed , a Galaxis sugarát azonosnak tekintik [2] . A csillagglória a középponttól számított 80 kiloparszek távolságig, a gömbcsillaghalmazok rendszere pedig még távolabb, 100 kiloparszek távolságig követhető [5] . A Tejútrendszer középpontjától számított 21 kiloparszeken belül 2⋅10 11 M ⊙ tömeg található . Galaxisunk teljes tömegét, figyelembe véve a sötét anyagot , leggyakrabban 1–2⋅10 12 M⊙-ra becsülik , bár egyes értékek ezen a tartományon kívül esnek [6] [7] [8] . Ebből az értékből körülbelül 5-6⋅10 10 M ⊙ [10] [11] [12] a csillagok száma, amelyek különböző becslések szerint 100-400 milliárd [9] a galaxisunkban . A Tejútrendszer fényessége a V sávban 2⋅10 10 L ⊙ , ami megfelel a –20,9 m abszolút nagyságának . Így a Tejútrendszer más spirálgalaxisokhoz képest meglehetősen nagy tömeggel és nagy fényerővel rendelkezik [13] .
A Naprendszer a Galaxis középpontjától 7,5-8,5 kiloparszek távolságra, a Perszeusz és a Nyilas spirális karjai között helyezkedik el, mindkettőtől 1,5-2 kiloparszek távolságra. A Naprendszer 10 parszek távolságra van a galaktikus síktól [1] [14] . Az ekliptika dőlése a galaktikus síkhoz képest 60 fok [15] .
A Nap a Galaxis középpontjához képest körülbelül 220 km/s sebességgel mozog, és 240 millió év alatt teljes körforgást végez körülötte. A legközelebbi csillagokhoz viszonyítva a Nap 20 km/s sebességgel mozog a Herkules csillagkép irányába . A Nap pályája a galaxisban eltér a körköröstől: mozgása során a Nap 0,1 kiloparszekeddel közelebb és 0,6 kiloparszekeddel távolabb lehet a középponttól, mint most, és távolodhat a galaktikus síktól akár kb. 85 parszek [16] .
A Naprendszer Galaxisunkon belüli helyzete bevezet bizonyos jellemzőket a tanulmányozási lehetőségekbe. Egyrészt csak a Tejútrendszerben lehet alacsony fényerősségű objektumokat, például vörös és fehér törpéket megfigyelni , közvetlenül mérni egyes csillagok méretét és alakját, valamint tanulmányozni a Galaxis háromdimenziós szerkezetét: más galaxisok esetében a szerkezet csak az égi szférára vetítve ismert . Ez a körülmény azonban számos problémát vet fel. A Galaxis objektumai minden oldalon elhelyezkednek, és a távolságuk nagymértékben változó, így a Tejútrendszer tanulmányozásához az egész égboltot fel kell mérni, és figyelembe kell venni a távolságok különbségét. Ezenkívül a galaktikus egyenlítő közelében lévő objektumok fényét erősen befolyásolja a csillagközi abszorpció , amely a Galaxis korongjában lévő csillagközi por jelenlétéhez kapcsolódik [17] .
A Tejútrendszer tanulmányozásához kényelmes a galaktikus koordináta-rendszer használata , amely közvetlenül kapcsolódik galaxisunk szerkezetéhez. A galaktikus egyenlítőt használja – az égi szféra nagy körét , amely egybeesik a Galaxis korongjának síkjával . Az első koordináta - galaktikus szélesség - egyenlő a csillag iránya és a galaktikus egyenlítő közötti szöggel. A második koordináta - a galaktikus hosszúság - egyenlő a galaktikus egyenlítő mentén a Galaxis középpontja és a világítótest iránya közötti szöggel. Ebben a rendszerben a Galaxis középpontjának koordinátái vannak , . A Galaxis északi és déli pólusa a és [ 18] [19] [20] helyen található .
A Galaxis középpontja ebben a koordinátarendszerben nem esik egybe a Sagittarius A* rádióforrás helyzetével a Galaxis magjában, hanem körülbelül 5 percnyi ív választja el tőle, mivel a Nyilas A*-t ennél később fedezték fel. koordinátarendszert vezettek be [19] .
A J2000.0 korszakban a Galaxis középpontjának koordinátái az egyenlítői koordinátarendszerben - deklináció és jobbra emelkedés - , . A Galaktikus Egyenlítő 62,87°-kal hajlik az égi egyenlítőhöz , a Galaxis északi pólusának egyenlítői koordinátái , [20] .
Az égbolt összes szabad szemmel látható csillaga a mi galaxisunkhoz tartozik. Ennek ellenére, ha az éjszakai égbolt megjelenéséről beszélünk , a Tejút csak egy azonos nevű , könnyű ködös sávra korlátozódik, amely az egész égboltot körülveszi. A Tejútrendszer fényét a Galaxis korongjának csillagai hozzák létre, amelyek többsége külön-külön nem látható [21] [22] [23] . A Tejút meglehetősen sötét éjszakai égbolton látható - távol a városoktól és a Hold hiányában a horizont felett [24] [25] .
A Tejút az égen egyenetlen alakú, szélessége körülbelül 15 fok [26] . A Tejútrendszer hátterében különféle ködök találhatók , például a Lagúna -köd és a Rozetta-köd . Egyes területek, mint például a Nagy Dip , sötétebbnek tűnnek, mivel az ezekből az irányokból érkező fényt csillagközi porfelhők takarják el . A Tejútrendszer a Galaxis közepe felé válik a legfényesebbé [23] .
A csillagközi abszorpció a korongban ahhoz a tényhez vezet, hogy a galaktikus egyenlítő körül van egy elkerülő zóna - egy olyan régió, amely az égbolt 20% -át foglalja el, ahol az extragalaktikus objektumok nem láthatók az optikai tartományban . Az elkerülési zónában lévő galaxisok azonban kimutathatók például infravörös és rádiós megfigyelések során [27] [28] .
Mivel a Föld a Tejútrendszeren belül van, Galaxisunk kívülről való pontos megjelenése nem ismert, azonban a Galaxis szerkezetére vonatkozó információk alapján, amelyek többféleképpen is meghatározhatók (lásd alább ) modellezni a megjelenését, és azt is feltételezni, hogy a hasonló paraméterekkel rendelkező galaxisoknak a Tejútrendszerhez kell hasonlítaniuk [29] [30] [31] .
Galaxisunkban a csillagok főleg a korongban koncentrálódnak . Ezen kívül a Galaxy közepes méretű domború és nyitott spirálkarral , valamint mérsékelten kifejezett rúddal rendelkezik . A Tejút tehát egy késői morfológiai típusú spirálgalaxis , és néhány paramétere, például a semleges hidrogén teljes mennyisége és a dudor mérete az Sb típusnak felel meg, míg mások, mint például a csillagkeletkezés . ráta , az Sc típusnak felel meg. Figyelembe véve a rúd jelenlétét, a morfológiai besorolás szerint Galaxisunk SBbc vagy SABbc [33] [34] [35] besorolású .
A Galaxis szerkezeti összetevői nemcsak elhelyezkedésükben és alakjukban különböznek egymástól, hanem a csillagpopuláció paramétereiben is, mint például az életkor és a fémesség (lásd alább ), valamint a dinamika (lásd alább ) [34] .
A korong a csillagok tömegének tartalmát tekintve Galaxisunk fő alkotóeleme. Lapos alakú és spirális karokat is tartalmaz . A teljes korong csillagtömege körülbelül 5⋅10 10 M ⊙ [comm. 1] [10] . Galaxisunk korongja vékonyra és vastagra osztható , és az első körülbelül egy nagyságrenddel nagyobb tömeget tartalmaz, mint a második, és általában a Galaxis bariontömegének 80%-át [36] . Ezek a komponensek különböző paraméterekkel rendelkeznek, és valószínűleg különböző módon alakíthatók ki (lásd alább ) [37] .
A Nap közelében egy vastag korong 1,2 kiloparszek vastagságú, egy vékony - 300-400 parszek, és még vékonyabb gázkomponenst tartalmaz. Mind a vékony, mind a vastag korongok vastagabbá válnak a Galaxis külső részein. A vastag korong főként régi, alacsony fémességű csillagokból áll , a vékony korongban pedig a csillagok fiatalabbak és fémekben gazdagabbak (lásd alább ), más különbségek is vannak köztük [36] [38] .
Az anyagsűrűség eloszlása a középpont távolságától függően a Tejútrendszer vékony korongjában, más galaxisokhoz hasonlóan, exponenciális , jellemző sugara 3 kiloparsec. A vékony korong a Galaxis középpontjától 16 kiloparszekre, míg a gázkomponens tovább nyúlik, és a középponttól 35 kiloparszekre is nyomon követhető. A korong ívelt alakja a külső régiókban, valószínűleg más galaxisokkal való kölcsönhatások miatt [39] [40] .
SpirálkarokNehéz következtetést levonni a spirálkarok jelenlétéről a Galaxis korongjában, az optikai tartományban megfigyelve, a csillagközi por általi fényelnyelés miatt . A semleges hidrogén- vagy molekulafelhők , valamint nagyon fiatal objektumok, például csillagtársulások eloszlásának feltérképezésekor azonban spirálkarok láthatók [2] [41] . A karokban lévő gáz sűrűsége többszöröse a korong többi részének sűrűségének, és ott a csillagkeletkezés a legaktívabb . A spirálkarok sűrűséghullámok , így a spirálminta egésze eltérő sebességgel forog, mint a csillagok és a gázok [42] .
A spirálkarok helyét, hosszát és páros számát még nem határozták meg pontosan [1] [43] , de leggyakrabban úgy tartják, hogy a Tejútrendszerben négy nagy spirálkar található: két fő - a Centaurus -kar és a Perseus kar , és két másodlagos kar - a Szög karja és a Nyilas kar [44] . Alakjuk logaritmikus spirál , amely körülbelül 12 ° -os szögben csavarodott. A nagy fegyverek mellett kitűnnek a kisebb, hasonló formációk, mint például az Orion Arm , vagy más néven Local Arm. A karok gáznemű összetevői sokkal messzebbre nyúlnak, mint a galaxis csillagrendszere. Ezenkívül a korongban lévő molekuláris gáz a középponttól 4 és 6 kiloparszekus belső és külső sugarú gyűrűt alkot [45] [46] .
A Naprendszer környezeteA Galaxis leginkább tanulmányozott régiója a Naprendszer környéke . Például a Naptól számított 10 parszeken belül 373 csillagot ismerünk , amelyek közül 20 fehér törpe , 85 barna törpe , és a legtöbb vörös törpe [47] . A Nap távolsága a legközelebbi csillagtól - Proxima Centauritól - 1,3 parszek, a legközelebbi csillaghalmazig - Hyades - 40 parszek [48] .
A Naprendszert körülveszi a Gould-öv , egy gyűrű alakú szerkezet, amely nagyszámú fényes csillagot és gázt tartalmaz. A Gould-öv ellipszis alakú, méretei körülbelül 500 × 1000 parszek, és 20°-kal dől a Galaxis korongjának síkjához, a Nap pedig 100 parszek távolságra van a középpontjától. A Naptól 1 kiloparsec-en belül elhelyezkedő O és B spektrumtípusú csillagok 90%-a a Gould-övben található [49] [50] .
A Nap környezetére vonatkozóan a Galaxis dinamikus jellemzőiből meg lehet határozni az anyag sűrűségét, valamint mérni lehet a korong különböző megfigyelt komponenseinek sűrűségét. Az ezen értékek közötti különbség nyilvánvalóan a sötét anyag jelenlétének köszönhető (lásd alább ). A táblázat bemutatja az egyes komponensek hozzájárulását a térfogatsűrűséghez a Nap közvetlen közelében és a korong felületi sűrűségéhez annak teljes vastagságában [51] :
Lemez komponens | Térfogatsűrűség, M ⊙ /db³ | Felületi sűrűség, M ⊙ /db² |
---|---|---|
Csillagok | 0,033 | 29 |
A csillagok maradványai | 0,006 | 5 |
barna törpék | 0,002 | 2 |
csillagközi közeg | 0,050 | 13 |
Összes megfigyelt anyag | 0,09 | 49 |
Dinamikus értékelés | 0.10 | 74 |
Sötét anyag | 0,01 | 25 |
A térfogati és felületi sűrűségre vonatkozó becslések nem mondanak ellent egymásnak. Például a sötét anyag arányának különbsége a Nap közvetlen közelében és a korong teljes vastagságában azt a tényt tükrözi, hogy a sötét anyag sűrűsége lassabban csökken a korongtól való távolsággal, mint a közönséges anyag sűrűsége. így a sötét anyag hozzájárulása a korong teljes vastagságában nagyobb, mint a síkja közelében. A korong vastagságát figyelembe véve a sötét anyag térfogatára és felületi sűrűségére vonatkozó becslések konzisztensek, bár a térfogatsűrűség 0,01 M ⊙ /pc³ értéke nem haladja meg a mérési hibát [51] .
A Tejútrendszer középső részén mérsékelten kifejezett dudor található . Ez egy 2,2×2,9 kiloparszek [52] méretű lapos gömb , tömege a rúddal együtt (lásd alább ) körülbelül 9⋅10 9 M ⊙ [10] . Fizikailag Galaxisunk kidudorodása nem klasszikus, hanem pszeudo -dudorokra utal - a klasszikus dudorokkal ellentétben forognak, laposabb formájúak és inkább korongszerűek. A Tejútrendszer dudorának van egy doboz alakú és egy korong alakú alkatrésze is [53] [54] .
A kidudorodás tanulmányozásában fontos szerepet játszott a Baade-ablak jelenléte, az égbolt egy kis része a Galaxis középpontja közelében, ahol a csillagközi kihalás viszonylag kicsi, ami lehetővé teszi az objektumok megfigyelését ebben a komponensben. a galaxis [55] .
A Tejútrendszerben van egy rúd - egy hosszúkás szerkezet a korong központi részén. Sugárja 4 kiloparszek, főtengelye 20°-os szöget zár be a látóvonallal. Közelebb van a Naphoz a rúdnak az a része, amely a pozitív galaktikus hosszúságon látható , így a csillagok látszólagos eloszlása a Galaxis központi tartományában aszimmetrikusnak bizonyul [56] . Egy másik jel, amely egy rúd jelenlétére utal, a gáz anomális sebessége a Galaxis központi részében, különösen pozitív és negatív sugárirányú sebessége eléri a 200 km/s-t. A rúd gravitációs potenciálja nem szimmetrikus, így további erőnyomatékot adhat a gáznak [1] [57] [58] .
A fő rúdon kívül a Galaxy közepén található egy kis, mintegy 150 parszek sugarú másodlagos rúd is, amely majdnem merőleges a főre. Nyilvánvalóan a Galaxis középpontjában lévő, 200 parszek sugarú molekuláris gázgyűrű kapcsolódik ehhez a másodlagos rúdhoz [58] .
A csillagok halója a Galaxis kiterjesztett, csaknem gömb alakú alrendszere. A csillagok halója a Galaxis középpontjától 80 kiloparszek távolságra követhető, de a Tejútrendszer összes csillagának csak néhány százalékát tartalmazza - csillagtömege körülbelül 10 9 M⊙ . Ugyanakkor a halo nagy mennyiségű sötét anyagot tartalmaz (lásd alább ) [2] [59] .
A csillagok halója heterogén: csillagfolyamok figyelhetők meg benne , mint például a Nyilas patak és az Unikornis Gyűrű . A csillagáramok olyan csillagcsoportok, amelyek a tér egy bizonyos régióját foglalják el, és amelyeket különösen közeli sebességük és hasonló kémiai összetételük különböztet meg. Ezért megjelenésüket a törpegalaxisok – amelyek a Tejútrendszer műholdai voltak – árapály-erők pusztulásával magyarázzák . A Nyilasban található elliptikus törpegalaxis jelenleg erős árapály befolyást tapasztal, és létrehozza a Nyilas-folyamot [59] [60] .
A galaxis közepén egy szupermasszív fekete lyuk található . Tömege 4,3⋅10 6 M ⊙ , kompakt Sagittarius A* rádiókibocsátó forrásként figyelhető meg, és része a nagyobb Sagittarius A rádióforrásnak . E fekete lyuk közelében egyes csillagok ismertek: az egyiknek a Galaxis közepe körüli forradalom periódusa 15 év, a másik 60 AU távolságra közelítette meg a középpontot. és 9000 km/s sebességgel mozgott [1] [61] [62] .
A középső, körülbelül 1 parszek nagyságú régió két csillaghalmazt tartalmaz: egy viszonylag idős, 10 6 M ⊙ tömegű és egy nagyon fiatal, 1,5⋅10 4 M ⊙ tömegű csillaghalmaz , mindkettő korong alakú. . Ezenkívül a központ körüli 2×3 parszek területen nincs gáz: valószínűleg a csillagszél fújta el . Ennek a régiónak a szélén egy gázgyűrű található, amely egy fekete lyuk akkréciós korongjának tűnik . A Galaxis középpontjától 100 parszeken belül - egy gyakran magnak nevezett régió - aktív csillagképződés következik be : szupernóva-maradványokat , infravörös sugárzásforrásokat és óriási molekulafelhőket találtak ott [1] . A központtól nagyobb távolságra van a központi molekulazóna — egy 200 parszek sugarú gyűrű alakú régió, amely nagy mennyiségű molekuláris gázt tartalmaz [63] .
A Galaxis középpontjának tanulmányozását nehezíti, hogy a csillagközi por fényelnyelése a középpont irányában eléri a 30 m -t a V sávban , így ez a tartomány csak az infravörös és rádiós tartományban figyelhető meg. [64] .
A Tejútrendszerben a csillagkeletkezés üteme különböző becslések szerint évi 1,6-2 M ⊙ [10] [65] . Nagyon leegyszerűsített formában a Galaxis csillagpopulációja I. és II. populációra osztható . Az első viszonylag fiatal, nagy fémtartalmú csillagokból áll , amelyek közel körkörös pályán mozognak, és lapos, forgó galaktikus korongot alkotnak . A második a régi, nehéz elemekben szegény csillagok, amelyek megnyúlt pályákon mozognak, és gömb alakú glóriát alkotnak , amely nem forog egészében, valamint egy dudort [66] . Ez vagy az a populáció nemcsak csillagokat foglalhat magában, hanem a Galaxis más objektumait is. Az I. populáció jellegzetes képviselői közé tartozik a csillagközi gáz , a csillagtársulások és a nyílt klaszterek , valamint a klasszikus kefeidák [67] . A II. populációba tartoznak például a gömbhalmazok és az RR Lyrae változók [2] [34] .
A fenti rendszer azonban általában elavultnak tekinthető. Az életkor, a kémiai összetétel és a kinematika közötti összefüggés tökéletlennek bizonyult, és az egyértelmű szétválasztás helyett simább gradációt találtak [2] . Valójában a Galaxis minden részében különböző korú és fémességű csillagok figyelhetők meg: ezeknek a paramétereknek az elterjedése meglehetősen nagynak bizonyul. Ráadásul a populáció jellemzői szerint a korong vékony és vastag korongra osztható (lásd fent ), és a dudor populációja eltér a halo populációjától, így célszerűbb beszéljünk külön ennek a négy alrendszernek a populációjáról [34] [68] .
A vékony korong populációja magában foglalja a Napot és a közelében lévő csillagok 96%-át. A vékony korong különböző korú csillagokat tartalmaz, a most felbukkanó csillagoktól a 10 milliárd éves, átlagos életkoruk pedig 6 milliárd év. Így a vékony korong egy viszonylag fiatal alrendszer, ahol a csillagkeletkezés még mindig zajlik , és a legaktívabb a spirálkarokban . A vékony korong csillagai nagy fémességgel rendelkeznek : átlagosan a nehéz elemek aránya bennük a Napéhoz hasonlítható, és a legtöbb csillagnál a nap 1/3-3 része [69] . Vékony korongon fémességi gradiens figyelhető meg : a korong belső részeiben magasabb, mint a külső részeken. Egy vékony korong gyorsan forog a Galaxis közepe körül, és a csillagok körpályához közeli pályán mozognak. A Nap közelében a vékony korongú csillagok sebessége körülbelül 220 km/s [36] [39] [68] .
A vastag lemez populációja különböző paraméterekben különbözik a vékony lemez populációjától. A Nap közelében lévő csillagok körülbelül 4%-a tartozik a vastag koronghoz, ezek közül valószínűleg az egyik az Arcturus . Ezek a csillagok meglehetősen régiek, körülbelül 10-12 milliárd évesek [70] [71] . Alacsonyabb fémességük, mint a vékony korongcsillagoknak: legtöbbjük fémbőségben [comm. 2] - 1/10-1/2 napenergia, átlagosan - 1/4. Ugyanakkor a vastag korong csillagaiban az alfa elemek , például az oxigén és a magnézium tartalma az összes fémhez viszonyítva magasabb, mint egy vékony korongban. A vastag korong, akárcsak a vékony, forog, de 40 km/s-mal lassabb sebességgel, így a csillagok elliptikus pályán mozognak, és nagyobb sebesség-szóródással rendelkeznek [68] [69] [73] .
A csillagglória nagyon alacsony fémességű régi csillagokból áll, többnyire szubtörpékből – a Naphoz legközelebbi halocsillag Kapteyn csillaga . A halo csillagok életkora meghaladja a 12 milliárd évet, a fémek aránya pedig általában a Nap 1/100-1/10-e, leggyakrabban körülbelül 1/30. Ennek az alrendszernek a csillagai gyakorlatilag nem rendelkeznek teljes impulzusimpulzussal , nagy sebességdiszperzióval rendelkeznek és nagyon megnyúlt pályákon mozognak, így a csillagglória összességében közel gömb alakú és nem forog [68] [74] [ 75] .
A Galaxis domborulata főleg 7 milliárd évnél idősebb csillagokból áll, de vannak benne fiatalabb csillagok is, amelyek egy része 500 millió évnél fiatalabb [76] . A kidudorodó csillagok fémessége nagyon változó - a legtöbb csillagnál ez az érték 2% és 1,6 nap között mozog, de átlagosan viszonylag magas, és eléri a 0,6 szoláris értéket, ráadásul a kidudorodó csillagok alfa elemekkel gazdagodnak [comm. 3] [77] [78] . Nyilvánvalóan különféle mechanizmusok hatására alakult ki a dudor populációja [75] . A kidudorodó populációnak a Nap közelében nincsenek képviselői [68] .
A Tejútrendszerben különböző csillagcsoportok léteznek: gömb alakú és nyitott csillaghalmazok , valamint csillagtársulások . Ezekben a rendszerekben a csillagok eredete közös [79] . Ezenkívül a Galaxisban vannak mozgó csillagcsoportok , ahol a csillagok nem feltétlenül csoportosulnak a térben, de hasonló mozgási sebességgel rendelkeznek [2] .
Globuláris klaszterekA gömbhalmazok alakja közel gömb alakú, és nagyszámú csillagot tartalmaznak: ezertől millióig, méretük pedig 3-100 parszek [2] . A Tejútrendszer legfényesebb gömbhalmazának, az Omega Centaurinak abszolút magnitúdója –10,4 m , míg a leghalványabbé körülbelül –3 m , az átlagos és leggyakoribb érték pedig –7 m . A gömbhalmazok a domborulatban és a halo -ban laknak: a középponttól akár 100 kiloparszek távolságra is előfordulnak, és leginkább a középpontban koncentrálódnak [80] [81] [82] .
A Tejútrendszerben található gömbhalmazok 11-13 milliárd éves régi objektumok, bár ez nem minden galaxisban van így – sok helyen találhatók fiatal gömbhalmazok [81] [83] . Ezeknek az objektumoknak többnyire alacsony a fémessége , egészen -2,5-ig, de egyes klaszterek fémessége meghaladja a Nap fémességét [82] .
Körülbelül 150 ilyen objektumot ismerünk a Galaxisban, és számuk körülbelül 200 lehet: némelyiküket a csillagközi por rejti, ezért nem figyelik meg [2] [6] .
A Tejútrendszerben a gömbhalmazoknak két alrendszere van: az F-klaszterek vagy haloklaszterek, amelyek fémessége -0,8 alatt van, és a G-klaszterek vagy korongklaszterek, amelyek fémessége meghaladja ezt az értéket. A halo klaszterek szinte gömbszimmetrikusan oszlanak el, nagyobb távolságra nyúlnak el a középponttól, és nagyobb számban vannak, mint a lemezklaszterek, amelyek egy laposabb alrendszert alkotnak. Valószínű, hogy a lemezklaszterek egy vastag lemez populációjába tartoznak [84] .
Klaszterek megnyitásaA gömbhalmazokkal ellentétben a nyitott halmazok kevésbé rendezett alakúak, ritkábbak, kisebbek - 10 parszek vagy kisebb nagyságrendűek -, és kisebb a csillagszámuk - tíztől több ezerig. A leghalványabb nyílt halmazok abszolút csillagmagassága gyengébb, mint -3 m , míg a legfényesebbeknél ez a paraméter eléri a -9 m -t . A nyitott halmazok a Galaxis síkjában oszlanak el, és közülük a legfiatalabbak spirálkarokban összpontosulnak [2] [85] [86] .
A nyitott klaszterek többnyire fiatal objektumok, és többségük kialakulásuk után néhány százmillió éven belül elbomlik, bár sokkal régebbi objektumok is találhatók közöttük [85] . Ennek megfelelően a nyílt halmazokban fényes kék csillagok vannak, amelyek hiányoznak a gömb alakúakból. A nyitott klaszterek fémessége magas, átlagosan a szoláris klaszterekhez hasonlítható [86] .
A Galaxisban több mint 1200 nyitott halmaz ismert [87] . Mivel azonban az ilyen halmazok nem mindig tűnnek ki más csillagok hátteréből, és a Galaxis korongjában helyezkednek el, ahol a csillagközi kihalás megakadályozza a megfigyelést, a galaxis összes nyitott halmazának csak egy kis része. ismert [86] .
Sztár asszociációkA csillagtársulások nagyon fiatal csillagcsoportok, amelyek együtt jöttek létre ugyanabban a régióban. Az asszociációk nagyok, akár 80 parszek is, ezért az asszociációkban szereplő csillagok túlságosan gyengén kötődnek a gravitációhoz, és az ilyen szerkezetek néhány millió év alatt szétesnek. Bár az asszociációk általában nem tartalmaznak több mint ezer csillagot, a legfényesebb közülük még a gömbhalmazoknál is fényesebb lehet, mivel nagy tömegű fényes, rövid élettartamú csillagokat tartalmaznak [2] [88] .
A galaxisunk csillagai közötti teret egy ritka csillagközi közeg tölti ki , amely a korongban koncentrálódik, és 99%-ban gázból áll – főleg hidrogénből és héliumból . További 1% a por, amely a fény csillagközi elnyelése és polarizációjaként nyilvánul meg [89] . A csillagközi közeg egy mágneses mezőt is tartalmaz , amelynek erőssége 3 mikrogauss - ez az érték túl kicsi ahhoz, hogy befolyásolja a gáz mozgását a Galaxisban, de elegendő ahhoz, hogy a porrészecskék bizonyos módon forogjanak, és fénypolarizációt hozzanak létre [2] . A csillagközi közegben relativisztikus sebességgel mozognak kozmikus sugarak – töltött részecskék, például elektronok és protonok [90] [91] [92] .
A Tejútrendszer csillagközi közege mind a hőmérséklet, mind a sűrűség tekintetében nagyon heterogén. A forró gáz hőmérséklete elérheti az egymillió kelvint , a hideg pedig 100 K alatti. Molekulafelhőkben a koncentráció az átlagos 1 részecske/cm³ alatt lehet, akár 1010 részecske /cm³ is . Ezt az inhomogenitást a csillagközi közeg állandó kölcsönhatása tartja fenn, például a csillagszél és a szupernóva-robbanások következtében [89] .
Fázis | Sűrűség (cm -3 ) | Hőmérséklet ( K ) | Teljes tömeg ( M ⊙ ) | |
---|---|---|---|---|
atomgáz | Hideg | 25 | 100 | 4⋅10 9 |
Meleg | 0,25 | 8000 | 4⋅10 9 | |
molekuláris gáz | 1000 | ≤100 | ≥3⋅10 9 | |
Ionizált környezet | Régiók H II | 1-10 4 | 10000 | 5⋅10 7 |
diffúz | 0,03 | 8000 | 10 9 | |
forró | 6⋅10 −3 | 5⋅10 5 | 10 8 |
A Galaxis egyik észrevehető összetevője a H II régió . Sok fiatal fényes csillagot tartalmaznak, amelyek ilyen régiókban képződnek, és ionizálják a környező gázt, ezért a H II régiók világítanak. Ezeknek a régióknak a jellemző mérete 50 fényév , de a legnagyobbak átmérője körülbelül 1000 fényév is lehet, az ilyen objektumok gáztömege 1-2 M ⊙ és több ezer között változik. A H II régiók a spirálkarokban koncentrálódnak, bár a karok közötti térben is előfordulnak [2] [94] .
A bolygóködök külsőleg hasonlítanak más típusú ködökhöz, és gázuk ionizációja miatt izzanak. Ezek olyan csillagok maradványai, amelyek befejezték evolúciójukat , és ledobták külső héjukat úgy, hogy jellemző méreteik megközelítik az 1 fényévet, és a gáz tömege körülbelül 0,3 M⊙ . Megfigyelhetők a korong különböző részein és a halo belső területein. Becslések szerint körülbelül 20 000 bolygóködnek kellene lennie a Galaxisban, de csak 1800 ismert [2] [95] .
Szupernóva-maradványok szupernóva-robbanások után keletkeznek . A planetáris ködökhöz képest több gáz van bennük, gyorsabban tágulnak és kevésbé láthatóak. Szinkrotron sugárzást is létrehoznak a rádió tartományában . Az egész galaxisban körülbelül 50 évente egyszer törnek ki szupernóvák [2] [96] .
A Tejútrendszer dinamikus jellemzőiből megbecsülhető össztömege (lásd alább ) jóval nagyobb, mint a benne megfigyelt anyag tömege, hasonló kép figyelhető meg a legtöbb más galaxis esetében is. Ebből arra következtethetünk, hogy a mi és más galaxisainkban sötét anyag található, amelynek természete ismeretlen, és amelyet nem figyelnek meg, de részt vesz a gravitációs kölcsönhatásban [1] [2] [97] .
A sötét anyag a Galaxis fényudvarában oszlik el (lásd fent ), és sötét glóriát alkot , amely a középponttól 100-200 kiloparszek távolságig terjed. A Galaxis belső részein a sötét anyag nem járul hozzá jelentősen a teljes tömeghez, de mivel sűrűsége a középponttól való távolság növekedésével lassan - arányosan - csökken, a sötét anyag uralja a Galaxis peremét és összességében a legnagyobbat alkotja. a Tejútrendszer teljes tömegének töredéke [2] [98] .
A mi Galaxynk forog, és a különböző alrendszerek forgása különböző sebességgel megy végbe – a laposabb alrendszerek forognak a leggyorsabban. A Nap a korong csillagaival együtt 220 km/s sebességgel forog a Galaxis középpontja körül [99] .
A Galaxis forgásgörbéjének pontos formája a különböző tanulmányokban eltérő, de az alakja általánosan ismert. A forgási görbe gyakorlatilag lapos, és nem esik több tíz kiloparszek távolságra a középponttól, ami a nagy mennyiségű sötét anyag jelenlétének köszönhető [100] . Ezenkívül az Oort-állandókból meghatározható a forgási görbe meredeksége a Nap közelében. Körülbelül −2 km/s per kiloparsec, vagyis a Galaxis ezen részén a forgási görbe csaknem állandó [101] .
Az egyes csillagok sebessége eltér a korong forgási sebességétől, különbségüket maradék sebességnek nevezzük. A csillagok maradéksebességének teljes szóródása laposabb rendszerek esetén a legkisebb, akár 15 km/s, míg a gömb alakú alrendszerben ez az érték elérheti a 100-150 km/s-ot is. Az idősebb csillagok esetében a Galaxis középpontja körüli forgási sebesség átlagosan kisebb, mint a fiatalabbaké, és sebességdiszperziójuk is nagyobb. Így például a Nap közelében a korong síkjára merőleges irányú sebességdiszperzió az O és B osztályú csillagoknál , amelyek rövid ideig élnek, 6 km/s, az osztályok törpéinél G - től M - ig , amelyek átlagosan nagyon régiek - 21 km / s. Ez azzal magyarázható, hogy idővel a csillagrendszerek sebességdiszperziója nő a csillagok molekulafelhőkkel és spirálkarokkal való kölcsönhatása miatt [102] [103] .
A csillagok maradéksebessége anizotróp eloszlású : minden alrendszer esetében a Galaxis közepe felé irányuló irányú diszperzió nagyobb, mint a diszperzió a korong forgásirányában és a korong síkjára merőleges irányban. Ráadásul ez az eloszlás aszimmetrikus a galaktikus központ irányához képest. Ezt a jelenséget csúcselhajlásnak nevezik , okának pedig a Galaxis gravitációs potenciáljának aszimmetriáját tekintik a korongban lévő spirálkarok miatt [102] [104] .
A Tejútrendszer több tucat galaxisból álló csoportban , a Local Group nevű csoportban található , amely körülbelül 2 megaparszek méretű [105] . A Tejútrendszer és az Androméda-galaxis sok tekintetben a Helyi Csoport két domináns galaxisa. Az Androméda-galaxis nagyobb, mint a mi galaxisunk, és több csillagot tartalmaz, de a Tejútrendszer tömege hasonló vagy még nagyobb, mint az Androméda-galaxis, köszönhetően a hatalmas sötét anyag halójának [8] . Egy másik objektum, a Triangulum galaxis a csoport harmadik legnagyobb galaxisa [106] .
Galaxisunk a több mint két tucatnyi műholdas galaxissal a Tejútrendszer [107] alcsoportját alkotja a Helyi Csoportban , amelynek mérete 300 kiloparszek. A legnagyobb és leghíresebb műholdak a Nagy és Kis Magellán-felhők , csillagképződnek, és vannak fényes, fiatal csillagok. A fennmaradó műholdak törpe szferoid galaxisok , ahol nem történik csillagkeletkezés. Nevüket arról a csillagképről kapták, amelyben megfigyelték őket, például a kemencegalaxisról , a szobrászgalaxisról és a szivattyúgalaxisról [105] .
Az Ősrobbanás 13,7 milliárd éve történt. Úgy gondolják , hogy a korai Univerzumban a sötét anyagból álló kis halók 10 7 M ⊙ nagyságrendű tömeggel alakultak ki az elsődleges sűrűség - ingadozásokból . Ezek az objektumok összegyűjtötték az Univerzumot megtöltő gázt, és egymással ütközve protogalaxisokat alkottak . 13 milliárd évvel ezelőtt csillagok kezdtek kialakulni Galaxisunkban – addig a pillanatig teljes egészében gázból és sötét anyagból állt. A Galaxis különböző alkotóelemei - a kidudorodó , halo , vékony és vastag korong (lásd fent ) - különböző időpontokban, eltérő módon alakultak ki [108] . Galaxisunk kialakulása során az Univerzum az Ősrobbanás során keletkezett elemekből állt - hidrogén , hélium , ezek izotópjai - deutérium és hélium-3 , valamint lítium-7 , a nehezebb elemek pedig főleg később a csillagokban [109] .
Kevesebb, mint 4 milliárd évvel az ősrobbanás után kialakult a dudor - a csillagképződés nagyon gyorsan ment, és kevesebb, mint 0,5 milliárd év alatt fejeződött be, ami miatt a dudor csillagaiban az alfa-elemek feleslege figyelhető meg a vashoz képest (lásd fent ). Ezzel egy időben, de hosszabb, körülbelül 1-2 milliárd éves periódus alatt, kis számú csillag keletkezett a glóriában. A korong később, az Ősrobbanás után 4-5 milliárd évvel keletkezett, ami után főként csak a korongban, kisebb részben a kidudorodásban keletkeztek csillagok [110] [111] .
Úgy gondolják, hogy a korong a belső részekből a külső részekre alakult ki: a belső részeken a csillagkeletkezés jellemző időtartama 2 milliárd év volt, a külső részeken pedig 10 milliárd év vagy több, ez magyarázza a gradienst. a korongban lévő csillagok fémessége (lásd fent ). A vastag korong a vékony korong előtt alakult ki, az első, 8 milliárd évvel ezelőtti kialakulása után pedig gyakorlatilag egymilliárd évre leállt a csillagkeletkezés. 7 milliárd évvel ezelőtt a csillagkeletkezés újraindult és szinte változatlan ütemben folytatódik, és a csillagok csak egy vékony korongban keletkeznek [111] [112] [113] .
Az elmúlt 12 milliárd év során Galaxisunk nem egyesült más nagy galaxisokkal, és az akkori egyesülések során a Tejútrendszer a saját 10%-ánál kisebb tömegű galaxisokat nyelte el. Az ilyen ütközések története atipikus, és megkülönbözteti a Tejútrendszert más galaxisoktól [114] [115] . Galaxisunk evolúcióját a kívülről érkező gázok felhalmozódása befolyásolja, évente körülbelül 3 M ⊙ , ami kompenzálja a csillagkeletkezés költségeit [116] .
Az Androméda-galaxis és a Tejútrendszer körülbelül 120 km/s sebességgel közeledik, az Androméda-galaxis érintőleges sebessége pedig elég kicsi ahhoz, hogy a galaxisok a jövőben ütközzenek. Ez 4 milliárd év múlva fog megtörténni, ezután még 2 milliárd évig tart az egyesülési folyamat, és az egyesülés eredményeként egy elliptikus galaxis jön létre . Amikor a galaxisok egyesülnek, a csillagok alacsony koncentrációja miatt nem valószínű az egyes csillagok ütközése, de lehetséges, hogy a Naprendszer messze kilökődik a létrejövő galaxis középpontjától. A Triangulum galaxis részt vesz ebben az ütközésben , és lehetséges, hogy a Tejútrendszer korábban ütközik vele, mint az Androméda galaxissal [117] [118] [119] .
A Tejút az ókor óta ismert. Az 1-2 . században élt Claudius Ptolemaiosz készített róla részletes leírást, de Galileo Galilei csak 1610-ben állapította meg először helyesen, hogy a Galaxis csillagokból áll. Teleszkópján keresztül megfigyelve azt találta, hogy a Tejútrendszer szórt fényét nagyszámú halvány csillag hozza létre [120] .
Másfél évszázaddal Galilei után, 1784-1785-ben William Herschel tett először kísérletet a Tejútrendszer méretének és alakjának meghatározására. Megmérte a csillagok számát az égen különböző irányokban, és arra a következtetésre jutott, hogy galaxisunk lapos korong alakú. Herschel megpróbálta megbecsülni a Galaxis méreteit is: kénytelen volt a csillagok közötti átlagos távolság egységeiben becsülni, ami akkor még nem volt ismert – arra a következtetésre jutott, hogy a Tejútrendszer átmérője 800 átlagos csillagtávolság. a vastagság pedig 150. Ez megfelel az 1800 parszek átmérőjének és a 340 parszek vastagságnak - a vastagságbecslés azóta alig változott, és az átmérőbecslés erősen alulbecsültnek bizonyult. Ráadásul Herschel arra a téves következtetésre jutott, hogy a Nap a Galaxis középpontja közelében van [121] [122] [123] .
Vaszilij Struve 1847-ben egy másik kísérletet tett arra, hogy a Galaxis méretét majdnem ugyanilyen módon becsülje meg. Ekkorra már meghatározták egyes csillagok távolságát, különösen 1838-ban Friedrich Bessel megmérte a 61 Cygnus csillag parallaxisát , és megállapította, hogy a távolság 3,3 parszek [124] . Struve a Galaxis méretét nem kevesebbre becsülte, mint 4 kiloparszek, és felvetette a csillagközi kihalás létezését is . Emellett észrevette, hogy a csillagok koncentrációja a Galaxis síkjától való távolsággal csökken [121] [123] .
A 20. század elején folytatódtak a kísérletek a Tejútrendszer méretének meghatározására. Különösen Hugo Zeliger és Jacobus Kaptein végzett megfigyeléseket fényképező lemezek segítségével, és ismételten becsléseket készített galaxisunk méretéről. Zeliger 1920-as, Kapteyn 1922-es becslése szerint 14,4×3,3, illetve 16×3 kiloparszek. Mindkét modell, akárcsak Herschel, tévesen feltételezte, hogy a Nap a középpont közelében található. A csillagászok akkoriban már megértették, hogy a csillagközi kihalás befolyásolja a megfigyelések eredményeit, de nem tudták pontosan megmérni [123] .
1917-ben Harlow Shapley más módon mérte meg a Tejútrendszer méretét: a gömb alakú csillaghalmazok eloszlásából , a távolságból, amelyet a cefeidák megfigyelései alapján mért . Ennek eredményeként Shapley arra a következtetésre jutott, hogy a Galaxis mérete 100 kiloparszek, a Nap távolsága pedig középpontjától 13 kiloparszek. Bár mindkét érték túlbecsültnek bizonyult, Shapley volt az első, aki kimutatta, hogy a Nap messze van galaxisunk középpontjától [123] [125] .
Ugyanakkor Shapley, mint a legtöbb akkori tudós, úgy vélte, hogy az egész Univerzumot a mi Galaxisunk korlátozza, amely magában foglalja az összes látható objektumot [126] . 1920-ban került sor a nagy vitára – Shapley és Geber Curtis megbeszélésére , amely a Galaxis méretének, a Nap helyzetének és egyéb kérdéseknek szentelve volt. Különösen Curtis nem hitte, hogy Shapley helyesen mérte meg a távolságokat [comm. 4] , a Curtis-modellben a Galaxis sokkal kisebb volt, a Nap a középpontja közelében volt, és egyes objektumok, például az Androméda galaxis nem szerepeltek benne. Valójában Shapleynek és Curtisnek is részben igaza volt [123] [125] [127] .
Edwin Hubble 1924-1925- ben be tudta bizonyítani, hogy az Univerzum nem korlátozódik a mi galaxisunkra. A cefeidák több galaxisban végzett megfigyelései alapján a Hubble meghatározta a távolságukat, amely jóval nagyobbnak bizonyult, mint a Tejútrendszer mérete, még Shapley túlbecslése szerint is. Így bebizonyosodott, hogy egyes ködök galaxisunkon kívül vannak, és külön csillagrendszerek [1] [128] [129] .
1925-ben Bertil Lindblad észrevette, hogy a Naphoz képest nagy sebességű csillagok sebessége aszimmetrikus eloszlású, és a Naphoz képest ugyanabban az irányban mozognak. Ugyanezt vette észre a gömbhalmazoknál is. Lindblad ezt azzal magyarázta, hogy a Nap és az őt körülvevő csillagok nagy része egy lapos korongban van, amely a Galaxis közepe körül forog, és a gömbhalmazok és a csillagok egy kis része gyakorlatilag nem forgó gömb alakú alrendszert alkot, ami ezért elemei nagy sebességgel rendelkeznek az azonos irányba mutató Napokhoz képest. 1927-1928-ban Lindblad és Jan Oort bebizonyította, hogy a Galaxis egy olyan középpont körül forog, amely egybeesik a Shapley által felfedezett gömbhalmazok rendszerének középpontjával, és észrevették, hogy a forgás nem merev, hanem differenciális [1] [130] [ 131] .
1944-ben Walter Baade felfedezte, hogy a galaktikus korong csillagai és a gömb alakú alrendszer különböznek egymástól, és bevezette a csillagok felosztását az I. és II. populációra. Az 1940-es években már a Tejútrendszerben azonosították a korongot, a dudort és a halót, az 1950-es években pedig felfedezték, hogy a csillagpopulációk kémiai összetételében is különböznek [132] . 1953-ban a Galaxis spirális karjainak szakaszait fedezték fel a Nap közelében, a következő évben pedig az egész Galaxis spirális szerkezetét. Az 1950-es évek végén felfedezték a Nyilas A rádiósugárzás forrását , amely a Galaxis közepén található [133] . A galaxisunkban egy bárt először csak 1991-ben fedeztek fel [130] .
Az 1989-ben felbocsátott Hipparcos űrteleszkóp fontos szerepet játszott galaxisunk tanulmányozásában . Ezzel a távcsővel számos csillag helyzetét, megfelelő mozgását és távolságát mérték. 120 000 csillag esetében a megfelelő mozgásokat és távolságokat 10%-nál jobb, 2,5 milliónál kisebb pontossággal mérték. Ezek az eredmények minden korábbit jelentősen felülmúltak, és különösen lehetővé tették a Nap közelségével kapcsolatos információk finomítását [134] .
A Tejútrendszer tanulmányozását a különböző nagyszabású égboltfelvételek során nyert adatok is befolyásolták [135] . Például a 2000-es években elvégzett 2MASS infravörös teljes égbolt felmérésnek köszönhetően lehetővé vált a Galaxis azon központi régióinak részletes tanulmányozása, amelyek megfigyelését a csillagközi kihalás befolyásolja. Különösen a 2MASS adatai szerint egy rúd jelenlétét igazolták, és egy kisebb másodlagos rudat nyitottak [136] . A Sloan digitális égbolt felmérés segítségével a Galaxis különféle szerkezeti paramétereit finomították, és új csillagfolyamokat fedeztek fel a halóban [137] [138] .
Emellett a különböző spektroszkópiai megfigyelések lehetővé tették a Galaxis kémiai evolúciójának részletes tanulmányozását, és a milliméteres és szubmilliméteres tartományban végzett megfigyeléseknek köszönhetően a csillagközi közegben különféle molekulákat fedeztek fel. A számítástechnika fejlődése lehetővé tette a galaxisok képződési és evolúciós folyamatainak szimulálását [139] .
A 2013-ban felbocsátott Gaia űrteleszkóp a Hipparcos távcső utódja [134] . A Gaia elődjénél 200-szoros pontossággal méri a Galaxis csillagainak helyzetét és megfelelő mozgását, és sokkal halványabb objektumokat is képes megfigyelni [140] . A teleszkóp 2014-ben kezdte meg működését, és 2016-ban jelent meg az első Gaia katalógus, a Gaia DR1, amely több mint 1,1 milliárd tárgyat tartalmazott [141] . 2022-ben megjelent a Gaia DR3 adatkészlet , amely már több mint 1,8 milliárd objektumot tartalmaz a 21. magnitúdóig . Ebből 1,4 milliárdért nemcsak a koordinátákat mérték az égen , hanem a parallaxist és a megfelelő mozgást is . Kis felbontású spektrumot 470 millió csillagra, a spektrális típust 217 millióra határozták meg [142] [143] .
A Tejútrendszer az ókor óta kulturális, vallási és filozófiai jelentőséggel bír a különböző népek körében. A "Tejút" név a görög-római mitológiából származik . Az egyik leggyakoribb legenda szerint Héra - Zeusz felesége - nem volt hajlandó szoptatni az utóbbi törvénytelen gyermekeit. Egyszer, amíg Héra aludt, Hermész a mellkasához hozta Herkulest , és miután etetni kezdett, Hera felébredt és eltolta magától. A mellkasból kifröccsenő tej a Tejútrendszerbe fordult. E cselekmény szerint különböző művészek, köztük Rubens és Tintoretto festették festményeiket. Maga a "galaxis" szó is ehhez a mítoszhoz kapcsolódik, és más görögökből származik. Κύκλος Γαλαξίας , ami " tejkör"-et jelent [144] [145] .
Sok kultúrában a Tejútrendszert az istenek és a halott hősök égboltjaként képzelték el. A kínai mitológiában a Tejútot ezüst folyóként ábrázolják, amely elválasztja az egymásba szerelmes takácsot és a pásztort – ezeket a fényes Vega és Altair csillagok személyesítik meg . Az ausztrál őslakos mitológiában a Tejútot kígyónak tekintik, amely esőt és termékenységet hoz. Az aztékok a Tejútrendszert is kígyó, a maják pedig világfa formájában képviselték [144] .
Tematikus oldalak | ||||
---|---|---|---|---|
Szótárak és enciklopédiák |
| |||
|
világűrben | A Föld elhelyezkedése a|
---|---|
Föld → Naprendszer → Helyi csillagközi felhő → Helyi buborék → Gould-öv → Orion Arm → Tejút → Tejút alcsoport → Helyi csoport → Helyi levél → Galaxisok helyi szuperhalmaza → Laniakea → Halak-Cetus szuperhalmaz komplex → Hubble-térfogat → Metagalaxis → Univerzum → ? multiverzum | |
A " → " jel azt jelenti, hogy "benne van" vagy "része" |