Robbanóanyag (köznyelvben - robbanóanyag , rövidítve: robbanóanyag) - kondenzált vegyi anyag vagy ilyen anyagok keveréke , amely bizonyos körülmények között külső hatások hatására képes egy gyors önterjedő kémiai átalakulásra ( robbanásra ), amely nagy mennyiségben szabadul fel. hő- és gáznemű termékek [2] [3] [4] [5] [6] [7] .
A kémiai összetételtől és a külső körülményektől függően a robbanóanyagok reakciótermékekké alakíthatók lassú (deflagrációs) égés , gyors ( robbanásveszélyes ) égés vagy detonáció esetén . Ezért hagyományosan a robbanóanyagok közé tartoznak azok a vegyületek és keverékek is, amelyek nem robbannak, hanem bizonyos sebességgel égnek (hajtóanyag puskapor , pirotechnikai összetételek ) [4] [7] . A robbanóanyagok energiakondenzált rendszerek [8] . Éghető gázok, gyúlékony folyadékok gőzei, szuszpendált éghető aeroszolok robbanást okozhatnak. Az ilyen robbanóanyag-keverékek pusztító hatása azonban gyenge a robbanóanyagokhoz képest, mivel az egyik komponens (levegő) nagy térfogatot foglal el a robbanás előtt, és a robbanási nyomás kicsi [9] .
A robbanásveszélyes átalakulás általában rövid távú, 2500 és 4500 K közötti hőmérsékleten megy végbe, és hatalmas mennyiségű magas hőmérsékletű gáz és hő felszabadulásával jár [7] [10] . A robbanásveszélyes reakcióhoz nem szükséges oxidálószer (amely általában oxigén ) jelenléte a környező levegőben, mivel azt kémiailag kötött formában tartalmazzák a robbanóanyag összetevői [7] .
A robbanás során felszabaduló teljes energiamennyiség viszonylag kicsi, és általában ötször-hatszor kisebb, mint az azonos tömegű olajtermékek fűtőértéke [2] [7] . Ennek ellenére a szerény energiavisszaadás ellenére a hatalmas reakciósebesség, amely az Arrhenius-törvény szerint a magas hőmérséklet következménye, biztosítja a nagy teljesítményértékek elérését [7] .
A nagy mennyiségű gáznemű égéstermék felszabadulását a robbanás formájában lejátszódó kémiai reakció újabb jelének tekintik [7] . Ugyanakkor a robbanóanyag gyors átalakulása magas hőmérsékletű gázokká hirtelen nyomásváltozással (akár 10-30 GPa-ig) jár együtt, amit lökéshullámnak neveznek [7] . Ennek a hullámnak a terjedése elősegíti az energia átvitelét egyik robbanórétegből a másikba, és új rétegekben hasonló kémiai reakció gerjesztésével jár. Ezt a folyamatot detonációnak nevezték , az ezt kiváltó lökéshullám pedig detonációs hullám néven vált ismertté [7] .
Számos olyan anyag létezik, amely nem kémiai robbanásra képes (pl. nukleáris és fúziós anyagok , antianyag ). Léteznek módszerek is a különféle anyagok befolyásolására, amelyek robbanáshoz vezetnek (például lézer vagy elektromos ív ). Az ilyen anyagokat általában nem "robbanóanyagnak" nevezik.
Az ember meglehetősen hosszú ideje fejleszti és tanulmányozza a robbanóanyagokat, párosulva azok gyakorlati alkalmazási lehetőségeivel. Történelmileg a modern robbanóanyagok első prototípusának tekinthető az ún. " Görög tűz "; ennek a találmánynak a szerzője egy Callinicus nevű görög nevéhez fűződik , és a kompozíció keletkezésének dátuma i.sz. 667. e. A meghatározott anyagot később Európa és a Közel-Kelet különböző ókori népei használták , azonban a történelmi folyamat során az előállítás receptje elveszett; Feltételezik, hogy a "görög tűz" kénből , kátrányból , sóból és égetett mészből állt . Ennek a robbanóanyagnak az volt a jellemzője, hogy megnőtt a tűz intenzitása, amikor az általa okozott lángot vízzel próbálták eloltani. Egy idő után, 682- ben Kínában kifejlesztették a fekete por első prototípusait , amelyek salétromot , ként és szenet tartalmaztak [5] ; a keveréket eredetileg a pirotechnikában használták , majd katonai jelentőségűvé vált.
Ami Európa országait illeti, a lőport a 13. századtól kezdték megemlíteni a történelmi dokumentumok [5] (körülbelül 1250-től), bár a történészek nem rendelkeznek pontos adatokkal arról, hogy pontosan ki volt ennek a robbanóanyagnak a felfedezője. A profiltanulmányok lehetséges jelöltjei között különösen Berthold Schwartz és Roger Bacon neve szerepel , és az olasz szakértők úgy vélik, hogy a puskapor első felhasználását a század eleji (1216) Bologna városához kell kötni .
Információ is van[ kitől? ] , hogy ezt a robbanóanyagot a kínai változatában a Dzsingisz kán vezette mongol hódítók használták, akik az erődfalak aláásására használták az ostrom során. Ez a tény lehetővé teszi egyes kutatók számára, hogy kijelenthessék, hogy mindenekelőtt a robbanóanyagokat lőpor alapján hozták létre, és csak azután - lőfegyvereket . Nem sokkal később, a XIV. század elején a szóban forgó robbanóanyagot a tüzérségben is alkalmazták , és lövedékek lövedékeit fegyverekből [5] ; Ismeretes, hogy ugyanennek a századnak a vége felé, 1382 - ben ágyúkat használtak Tokhtamys kán Moszkvát ostromló csapatai ellen . Emellett a kézifegyverek első mintáinak megjelenése is a 14. századra nyúlik vissza: Oroszországban 1389-ben, szintén Moszkva védelme idején használták először a puskaporos fegyvereket . Bár a lőport főként katonai ügyekben használták, ennek a robbanóanyagnak a képességeit megpróbálták békés célokra adaptálni: például a 17. század első harmadában Magyarországon ( más források szerint - Szlovákiában [5] ) először a bányászatban tesztelték, majd a megfelelő technológiát kiterjesztették az útalagutak építésére is. Ugyanebben az időben kezdték el elsajátítani a tüzérségi gránátok gyártásának technológiáját, vagyis a tüzérségi magok portöltetű felszerelését [5] .
A hagyományos fekete por évszázadokon át nemcsak az egyetlen lőporfajta maradt, hanem általában az egyetlen ember által ismert robbanóanyag, bár ebben az időszakban történtek kísérletek a javítására. Például Oroszországban a vonatkozó kutatást M. V. Lomonoszov végezte , aki a 18. század közepén egy speciális tudományos munkát készített: „Tézis a salétrom születéséről és természetéről” (1749); ebben a munkában írták le és értelmezték először tudományosan a lőpor robbanásszerű bomlását. Ezzel párhuzamosan Franciaországban hasonló kérdéseket tanulmányoztak A. L. Lavoisier és C. L. Berthollet kémikusok , akik ugyanezen század utolsó negyedének elejére kidolgozták a klorátpuskapor képletét; összetételében a salétrom helyett klór-kálium (Berthollet) sót használtak . Ennek ellenére a fekete por a 19. század második feléig továbbra is a katonaság szolgálatában állt, ahol aktívan főként tüzérségi hajtótöltetek, robbanólövedékek felszerelésére, földalatti aknák építésére stb. használták [3] .
A robbanóanyagok fejlődésének következő szakasza a 18. század végéhez köthető, amikor is felfedezték a „ robbanó ezüstöt ”, amelyet akkoriban meglehetősen magas veszélyességi szint jellemez. Aztán 1788 -ban pikrinsavat kaptak , amelyet a tüzérségi lövedékek gyártásában is alkalmaztak. A tudományos konszenzus a " higanyfulminát " felfedezését E. Howard brit kutatónak (1799) tulajdonítja, azonban a feltalálásáról már a 17. század végén is van információ [5] . Annak ellenére, hogy robbanóképességét nem vizsgálták részletesen [5] , főbb jellemzőit tekintve a higanyfulminát bizonyos előnyökkel bírt a hagyományos fekete porral szemben. A 19. század első harmadának végén aztán a fa salétrom- és kénsavval való keverésével nyerték a piroxilint , ami egyben az ember által ismert robbanóanyag-arzenált is feltöltötte, és füstmentes lőpor előállítására szolgált. 1847-ben A. Sobrero olasz kémikus szintetizálta először a nitroglicerint , amelynek instabilitásának és bizonytalanságának problémáját később A. Nobel részben megoldotta a dinamit feltalálásával . 1884-ben P. Viel francia mérnök javasolta a füstmentes por receptjét [5] . A század második felében számos új robbanóanyagot hoztak létre, különösen a TNT -t (1863), a hexogént (1897) és néhány mást, amelyeket aktívan használtak fegyvergyártásban [5] [11] , de praktikusak. felhasználása csak azután vált lehetségessé, hogy D. I. Andrievszkij orosz mérnök 1865-ben és A. Nobel svéd feltaláló 1867-ben feltalálta a robbanóanyag detonátorsapkát [5] . Az eszköz megjelenése előtt a bontási munkák során a fekete por helyett nitroglicerint használó hazai hagyomány a robbanékony égési módra támaszkodott [5] . A detonáció jelenségének felfedezésével a nagy erejű robbanóanyagokat széles körben kezdték használni katonai és ipari célokra [5] .
Az ipari robbanóanyagok közül kezdetben A. Nobel szabadalma szerint a gurdinamitot, majd a műanyag dinamitokat és a porított nitroglicerin kevert robbanóanyag-összetételeket alkalmazták [5] . Érdemes hangsúlyozni, hogy az ammónium-nitrát robbanóanyagok egyes receptjeire az első szabadalmakat I. Norbin és I. Olsen (Svédország) szerezte 1867-ben, de gyakorlati felhasználásuk lőszer-felszerelésben és ipari célokra az első világ éveire esett. Háború [5] . Mivel ez a fajta robbanóanyag sokkal biztonságosabbnak és gazdaságosabbnak bizonyult, mint a hagyományos dinamit, az 1930-as évek óta jelentősen megnőtt az ipari alkalmazásokban való felhasználása [5] . A Nagy Honvédő Háború után a Szovjetunió területén az ammónium-nitrát robbanóanyag kompozíciók (eleinte finoman diszpergált ammonitok formájában ) váltak az ipari robbanóanyagok domináns típusává [5] . Külföldön a XX. század 50-es évei körül megkezdődött az ipar tömeges újrafelszerelésének folyamata a dinamittól az ammónium-nitrát robbanóanyagig [5] .
A XX. század 70-es évei óta a szemcsés és víztartalmú ammónium-nitrát készítmények legegyszerűbb összetételei, amelyek nem tartalmaznak nitrovegyületeket vagy egyéb egyedi robbanóanyagokat, az ipari robbanóanyagok fő típusává váltak. Rajtuk kívül nitrovegyületekkel alkotott keverékeket is alkalmaznak [5] . A finoman diszpergált ammónium-nitrát robbanóanyag-kompozíciók megőriztek gyakorlati értéket, elsősorban harcos töltények felszerelésére és bizonyos specifikus robbantási típusok végrehajtására [5] . Az egyedi robbanóanyagokat, főleg a TNT-t továbbra is használják dáma készítésére . Ezen túlmenően tiszta formában ( granulotol ) és különféle nagy vízállóságú keverékek (szemcsés és szuszpenziós) részeként használják elárasztott kutak hosszú távú betöltésére [5] . A HMX -et és az RDX -et továbbra is használják mély olajkutak perforálási műveleteihez [5] .
A robbanóanyagok kémiájának és technológiájának összetettsége és sokfélesége, a világ politikai és katonai ellentmondásai, az e területtel kapcsolatos információk osztályozásának vágya instabil és változatos kifejezések megfogalmazásához vezetett.
Az ENSZ vegyi anyagok osztályozásának és címkézésének globálisan harmonizált rendszerének (GHS) jelenlegi, 2011-es kiadása a következő meghatározásokat tartalmazza [12] :
2.1.1.1 Robbanásveszélyes anyag (vagy keverék) – Olyan szilárd vagy folyékony anyag (vagy anyagok keveréke), amely önmagában is képes kémiai reakcióra gázok képzésére olyan hőmérsékleten és nyomáson, és olyan sebességgel, hogy károsítsa a környező tárgyakat. A pirotechnikai anyagok akkor is ebbe a kategóriába tartoznak, ha nem bocsátanak ki gázokat.
A pirotechnikai anyag (vagy keverék) olyan anyag vagy anyagok keveréke, amelynek célja hő, tűz, hang vagy füst, vagy ezek kombinációja, önfenntartó exoterm kémiai reakciók, detonáció nélküli hatása.
A robbanóanyag alatt mind az egyedi robbanóanyagokat, mind az egy vagy több egyedi robbanóanyagot, flegmatizálószert, fémadalékot és egyéb komponenst tartalmazó robbanóanyag-összetételeket értjük. A robbanóanyagok robbanásszerű átalakulását a következő feltételek jellemzik:
Oroszországban az ember által előidézett vészhelyzetekre vonatkozó szabványosítás keretein belül a robbanóanyagok közé tartoznak az olyan anyagok, amelyek láng hatására felrobbannak, vagy ütésre vagy súrlódásra érzékenyebbek, mint a dinitrobenzol [13] .
Minden robbanóanyag a következő jellemzőkkel rendelkezik:
A robbanóanyagok legfontosabb jellemzői [3] :
A robbanás során a robbanóanyagok bomlása olyan gyorsan (10 -6 és 10 -2 s közötti idő alatt ) megy végbe, hogy a több ezer fokos hőmérsékletű gáznemű bomlástermékek a töltet kezdeti térfogatához közeli térfogatban összenyomódnak. Élesen bővülve, ezek jelentik a robbanás pusztító hatásának fő elsődleges tényezőjét.
A robbanóanyagok hatásának két fő típusa van: erősen robbanásveszélyes (helyi hatás) és erősen robbanásveszélyes (általános hatás).
A robbanóanyagok stabilitása elengedhetetlen a robbanóanyagok tárolása és kezelése során .
Az alkalmazott területeken legfeljebb két-három tucat robbanóanyagot és ezek keverékét használnak széles körben [4] . A leggyakoribbak főbb jellemzőit az alábbi táblázat foglalja össze (az adatok 1600 kg/m 3 töltéssűrűség mellett vannak megadva ) [4] :
Robbanó | Oxigén egyensúly, % |
Robbanáshő, MJ/kg |
A robbanástermékek térfogata, m 3 / kg |
Detonációs sebesség, km/s |
---|---|---|---|---|
TNT | -74,0 | 4.2 | 0,75 | 7.0 |
Tetril | -47.4 | 4.6 | 0,74 | 7.6 |
RDX | -21.6 | 5.4 | 0,89 | 8.1 |
Teng | -10.1 | 5.9 | 0,79 | 7.8 |
Nitroglicerin | +3,5 | 6.3 | 0,69 | 7.7 |
Ammonite #6 [15] | 0 | 4.2 | 0,89 | 5.0 [16] |
ammónium-nitrát | +20,0 | 1.6 | 0,98 | ≈1,5 [16] |
ólom-azid | nem alkalmazható | 1.7 | 0.23 | 5.3 [17] |
Ballisztikus por [18] | -45 | 3.56 | 0,97 | 7.0 |
Évente több millió tonna robbanóanyagot állítanak elő a világon [8] . Az éves robbanóanyag-felhasználás a fejlett ipari termeléssel rendelkező országokban békeidőben is több százezer tonna. Háborús időszakban a robbanóanyagok fogyasztása drámaian megnő. Tehát az 1. világháború alatt a háborúzó országokban körülbelül 5 millió tonnát tett ki, a 2. világháborúban pedig meghaladta a 10 millió tonnát. A robbanóanyagok éves felhasználása az Egyesült Államokban az 1990-es években körülbelül 2 millió tonna volt.
Katonai ügyekben a robbanóanyagokat különféle típusú fegyverek hajtóanyag tölteteiként használják, és célja a lövedék ( golyó ) bizonyos kezdeti sebességének biztosítása.
Különböző osztályú rakéták robbanófejeinek, rakéta- és ágyútüzérségi lövedékeknek , tüzérségi és gépi aknáknak , repülőgép - bombáknak , torpedóknak , mélységi tölteteknek , kézigránátoknak stb. felszerelésére is használják.
A robbanóanyagokat széles körben használják az iparban különféle robbantási műveletekhez .
Vannak robbanóanyag felhasználásával készült monumentális művészeti alkotások ( Crazy Horse Monument in South Dakota , USA ).
Az Orosz Föderációban a robbanóanyagok , robbanóanyagok, lőpor, minden típusú rakéta-üzemanyag , valamint az ezek előállításához szükséges speciális anyagok és speciális berendezések, gyártásukhoz és üzemeltetésükhöz szükséges hatósági dokumentáció.
A kutatási területen a robbanóanyagokat széles körben használják egyszerű eszközként jelentős hőmérséklet, ultramagas nyomás és nagy sebesség elérésére kísérletekben [4] .
Kémiai összetétele szerint a robbanóanyagok teljes választéka robbanásveszélyes kémiai vegyületekre és robbanó keverékekre oszlik [3] :
Értékük és robbanásveszélyes tulajdonságaik szerint a robbanóanyagokat indító és robbantásosra osztják [3] ; számos hiteles forrás ehhez a kettőhöz hajtóanyagú robbanóanyagot (puskaport és pirotechnikai eszközöket) is ad [4] [7] .
Iniciáló robbanóanyagokAz indító (elsődleges) robbanóanyagok célja, hogy robbanóanyag-átalakításokat indítsanak el más, stabilabb robbanóanyagok tölteteiben. Már légköri nyomáson is instabil az égésük, és minden kezdeti gyújtási impulzus azonnal detonációt vált ki [7] . Ezenkívül az indító robbanóanyagok rendkívül érzékenyek, és könnyen felrobbanhatnak sok más típusú kezdeti becsapódástól: ütközés, súrlódás, szúrás, elektromos szikra és mások [7] . Az indító robbanóanyagok alapja a higany-fulminát , az ólom-azid , az ólom- trinitro -rezorcinát (THRS), a tetrazol, a diazodinitro-fenol (vagy ezek keverékei) és más nagy (5000 m/s feletti) detonációs sebességű anyagok [3] .
A hadügyben és az iparban az indító robbanóanyagokat gyújtósapkák, gyújtóperselyek , gyújtócsövek, különféle elektromos gyújtók, tüzérségi és robbanóanyag - sapkák , elektromos detonátorok stb. felszerelésére használják. , squibs , pyro-locks, pyro-tolók, pyro-membránok, pyro-indítók, katapultok, robbanásveszélyes csavarok és anyák, pirovágók, önfelszámolók stb. [3]
Erőteljes robbanóanyagokBrisant (másodlagos) - nagy fénysűrűségű anyagok , ami az anyagban a robbanáshullám nagy terjedési sebességének felel meg. Kisebb érzékenységükben különböznek a beindítóktól, és viszonylag alacsony nyomáson (amelynek azonban magasabbnak kell lennie a légköri nyomásnál) való égésük detonációhoz vezethet [7] .
A nagy erejű robbanóanyagok kevésbé érzékenyek a külső hatásokra, a bennük lévő robbanóanyag-átalakítások gerjesztése főként indító robbanóanyagok segítségével történik. Különféle nitrovegyületek ( TNT , nitro -metán , nitronaftalinok , stb.), N-nitraminok ( tetril , hexogén , oktogén , etilén-N,N'-dinitramin stb.), alkohol-nitrátok ( pentaeritrit - tetranitrát , nitro-nitro-glikol , nitro- glicerintra , nitroglicerin stb. Ezeket a vegyületeket gyakran keverik egymással és más anyagokkal [3] .
A robbanásveszélyes keverékeket gyakran az oxidálószer típusáról nevezik el [3] :
A töltőelemek gyártási módja szerint a nagy erejű robbanóanyagokat gyakran öntésre, préselésre és csavarkovácsolásra, a deformáció visszafordíthatósága szerint pedig műanyagra és rugalmasra osztják [3] .
Erőteljes robbanóanyagokkal szerelik fel különböző osztályú rakéták robbanófejeit, rakéta- és ágyútüzérségi lövedékeket , tüzérségi és gépi aknákat , légi bombákat , torpedókat , mélységi tölteteket, kézigránátokat stb.
A nukleáris fegyverekben erős robbanóanyagokat használnak olyan töltetekben, amelyek célja a nukleáris üzemanyag szuperkritikus állapotba történő átvitele.
A rakéta- és űrtechnológia különféle segédrendszereiben a nagy erejű robbanóanyagokat fő töltetként használják a rakéták és űrhajók szerkezeti elemeinek elválasztására, a tolóerő levágására, a hajtóművek vészleállítására és felrobbantására, az ejtőernyők kilökésére és leállítására , a nyílások vésznyitására, stb.
A repülési piroautomatikus rendszerekben erős robbanóanyagokat használnak a kabinok vészhelyzeti szétválasztására, a helikopter légcsavarok robbanásszerű kilökésére stb.
Jelentős mennyiségű erős robbanóanyag fogy a bányászatban (terítési munkák, bányászat), az építőiparban (gödrök előkészítése, kőzetroncsolás, felszámolt épületszerkezetek rombolása), az iparban (robbanóhegesztés, impulzusos fémfeldolgozás stb.).
Dobó- és pirotechnikai kompozíciókAz Orosz Föderációban hatályos szabályozás szerint a por és a pirotechnikai kompozíciók nem tartoznak a robbanóanyagok közé, mivel megszűnt robbanóanyagként és robbanótöltetként való felhasználásuk [3] .
A robbanóanyagok (puskapor és hajtóanyagok ) energiaforrásként szolgálnak a szükséges kinetika kölcsönzéséhez a különféle lövedékekhez ( tüzérségi aknák , golyók stb.) a hordó- és rakétatüzérségi rendszerekben [7] . Megkülönböztető jellemzőjük a robbanásveszélyes átalakulás képessége gyors, stabil égés formájában, amely több GPa-ig terjedő nyomástartományban nem válik detonációvá [7] . Azonban megtartják azt a képességüket, hogy engedjenek a detonációs impulzusból származó detonációnak [7] .
A lőport füstösre és füstmentesre osztják. Az első csoport képviselői lehet a fekete por, amely salétrom, kén és szén keveréke, például tüzérség és puskapor, amely 75% kálium-nitrátból, 10% ként és 15% szénből áll. A fekete por lobbanáspontja 290-310°C. A második csoportba tartozik a piroxilin, nitroglicerin, diglikol és egyéb puskaporok. A füstmentes porok lobbanáspontja 180-210°C.
A speciális lőszerek felszerelésére használt pirotechnikai készítmények (gyújtó-, világító-, jelző- és nyomjelző) oxidálószerek és éghető anyagok mechanikus keverékei. Normál használati körülmények között elégetve a megfelelő pirotechnikai hatást adják (gyújtó, világítás stb.). Ezen vegyületek közül sok robbanásveszélyes, és bizonyos körülmények között felrobbanhat.
A pirotechnikai kompozíciókat pirotechnikai hatások (fény, füst, gyújtóanyag, hang stb.) előállítására használják. A pirotechnikai kompozíciók robbanásveszélyes átalakulásának fő típusa az égés.
Különféle rendszerek léteznek a robbanóanyagok veszélyességi fok szerinti osztályozására. A leghíresebb:
Szótárak és enciklopédiák |
|
---|---|
Bibliográfiai katalógusokban |
|