Paraméter

A paraméter ( más görög παραμετρέω  - „ mérés ” szóból; ​​ahol παρά : „ közelben ”, „ másodlagos ”, „ kiegészítő ”, „ alárendelt ”; és a μέτρον : „ mérés ”) olyan érték , amely a kiszolgáló elemeit megkülönbözteti. bizonyos halmazok egymás között [B: 1] [1] ; olyan érték, amely egy adott jelenség vagy feladat határain belül állandó, de egy másik jelenségre vagy feladatra való átmenetben, amely megváltoztathatja az értékét [B: 2] .

Néha a paramétereket mennyiségeknek is nevezik, amelyek nagyon lassan változnak más mennyiségekhez (változókhoz) képest.

Paraméter - egy objektum vagy rendszer mérhető tulajdonsága vagy mutatója; egy rendszerparaméter mérésének eredménye a paraméter száma vagy értéke , maga a rendszer pedig olyan paraméterek halmazának tekinthető, amelynek mérését a kutató szükségesnek tartotta viselkedésének modellezéséhez [B: 3] [B: 4 ] .

A kifejezés használatának jellemzői

A "paraméter" kifejezést számos tudományterületen használják: matematikában , statisztikában , fizikában , logikában , mérnöki tudományokban , stb., ahol megvan a maga sajátos jelentése, ezért használatában van némi zavar [2] [3] .

Matematika

A matematikában a "paraméter" kifejezést két értelemben használják:

  1. Olyan mennyiség, amely egy adott feladatban vagy egy adott görbére állandó, de nem univerzális állandó. Például egy függvényben a mennyiségek változók, egy univerzális állandó és egy paraméter.
  2. Segédváltozó, amely nem szerepel a probléma feltételében, de alkalmas a megoldásra vagy az áttekinthetőségre. Például egy lapos fix kör egyenlete helyettesíthető a rendszerrel , ahol egy paraméter, azaz egy segédváltozó.

Termodinamika

A termodinamikában statisztikai modelleket használnak , amelyek szükségesek a fluktuációk , zaj stb. hatásának elméleti vizsgálatához az oszcillációs rendszerekben zajló folyamatokra; ha véletlenszerű folyamatokat veszünk figyelembe , a rendszer mozgása a statisztika törvényeinek fog engedelmeskedni [4] . Ugyanakkor a megfigyelések eredményeinek függvénye az eloszlások és a hipotézisek jellemzőinek és paramétereinek értékelésére szolgál .

Dinamikus rendszerek elmélete

A valós rendszerek dinamikus modelljeiben a fluktuációkat és minden egyéb statisztikai jelenséget figyelmen kívül hagynak. Ha a valós fizikai rendszerek idealizálásáról beszélünk dinamikus modellek formájában , akkor a rendszer állapotát meghatározó mennyiségek közötti kapcsolatok bizonyos differenciálegyenletek formájában fejezhetők ki, amelyek bizonyos számú állandó paramétert tartalmaznak, amelyek a rendszer állapotát jellemzik. rendszer, vagyis annak tulajdonságait tükrözi ; konstans paraméterek vagy kombinációik együtthatók formájában szerepelnek az ilyen egyenletekben [4] .

A dinamikus rendszerek tanulmányozása során néha megkülönböztetik a "parazita" paraméterek csoportját - vagyis azokat, amelyeknek változása a kutató számára érdekes értéktartományon belül nem befolyásolja jelentősen a rendszer viselkedését [5] .

A dinamikus bifurkációk elméletében [A: 1] a paramétert időfüggő, változó paraméternek tekintjük ; sőt, egy rendszer tulajdonságainak tanulmányozása szempontjából általában érdekes egy bifurkációs paraméter , vagyis az, amely megváltoztatásakor a rendszerben egy vagy másik bifurkáció lép fel [6] . A dinamikus bifurkációk vizsgálatát általában gyors-lassú rendszerekben végzik , vagyis az úgynevezett kis paramétert tartalmazó rendszerekben, amelyek segítségével a rendszert "gyors" és "lassú" részekre osztják.

Példák

Analitikus geometria

A derékszögű derékszögű koordinátákban az egyenlet a síkon lévő összes sugarú kör halmazát határozza meg ; Feltételezve például, hogy ebből a halmazból egy jól definiált kört választanak ki középponttal , és ezért a kör paraméterei a vizsgált halmazban [1] .

Az ideális gázegyenlet

Az ideális gázegyenletben

Például egy izokhorikus folyamatban (amikor az anyag térfogata és mennyisége változatlan ):

Programozás

A paraméter a programozásban egy függvény által elfogadott argumentum. Az "argumentum" kifejezés azt jelenti, hogy pontosan mit adtak át, és melyik funkcióhoz, valamint a paramétert - azt, hogy a függvény milyen minőségben alkalmazta ezt.

Műholdak és bolygók pályája

A műholdak és bolygók keringési mozgásának tanulmányozásakor különböző mennyiségeket használnak:

Népességnövekedés

A népességnövekedést modellező differenciálegyenletben

ahol a változó (nem a paraméter) a populáció mérete, a paramétert olyan mennyiségként használják, amely meghatározza a környezet által táplálható egyedek maximális számát. a paramétert a népességnövekedés ütemeként határozzuk meg .

Itt az értéket általában változónak nevezik , és nem paraméternek, mert minden egyes időlépésben megpróbálják kiszámítani , vagyis a számítás során folyamatosan változik. A környezet tulajdonsága és (paraméterei), valamint a népességnövekedés paramétere a népességnövekedés teljes időszakában változatlan, és a modelltervező még az egyenlet összeállítása előtt méri.

Statisztikai normális eloszlási modell

A statisztikában a "paraméter" szó (néha az "indikátor" kifejezést is használják) a sokaság statisztikai tulajdonságaira utal (átlag, módus, medián, variancia stb.). Például az emberek magasságának normális eloszlásának modellje az Oroszországban élő összes népességen belül a következő eloszlással adható meg:

 

ebben a képletben:

Lásd még

Jegyzetek

  1. 1 2 MES, 1995 , p. 451.
  2. Ezen területek mindegyikén körültekintően kell eljárni a kifejezés értelmezésekor. Ezért a paraméter szót néha a függvény argumentumának, rendszertulajdonságnak, axiómának, változónak, függvénynek, attribútumnak stb. szinonimájaként használják.
    A paraméter szó használatában a leggyakoribb hiba az, hogy a " változó " kifejezéssel azonosítják. A paraméter egy olyan mennyiség, amelyet a változó kiszámításához mérnek . A változó olyan érték, amelyet különféle műveletek végrehajtásával számítanak ki (beleértve azokat is, amelyek korábban meghatározott vagy mért paramétereket tartalmaznak), és így egy objektum vagy rendszer jellemzője .
    Tegyük fel például, hogy van egy egyenletünk , amely egy síkban lévő egyenesek halmazát határozza meg. A pontban a változó értékének kiszámítása előtt meg kell adnunk a paraméterek és (a dőlésszög és az egyenes magassága) értékeit, ami egyenértékű a paraméter szögmérővel történő mérésével és a paramétert egy vonalzóval. Tegyük fel, hogy méréseink után és , így az összes sor halmazából egy adott sort kapunk . Most az egyenlet megoldásával kiszámíthatja egy változó értékét egy pontban .

  3. További hibaforrás a "paraméter" szó megértésében és használatában a változók matematikai elemzésben használt reprezentációjának típusa , amikor a függőségüket egy további érték- paraméteren keresztül fejezik ki .
  4. 1 2 Andronov, 1981 , Bevezetés, p. 15-34.
  5. Andronov, 1981 , I. fejezet. Lineáris rendszerek, p. 35-102.
  6. Egy ilyen időben változó paramétert nem szabad összetéveszteni az állapotváltozókkal : a rendszerállapot-változók változása nem vezet bifurkációhoz.

Irodalom

Könyvek
  1. Matematikai enciklopédikus szótár / Yu. V. Prokhorov . - M . : Tudományos kiadó " Big Russian Encyclopedia ", 1995. - 847 p.
  2. D. N. Ushakov. Az orosz nyelv magyarázó szótára. - 3 kötetben, egy 1948-as 4 kötetes kiadás alapján. - M . : " Veche ", "Sea ETS", 2001.
  3. John B. Fehn. Gépek, energia, entrópia / Yu. G. Rudoy . - "MIR" kiadó, 1986. - S. 53. - 333 p.
  4. Andronov A. A. , Witt A. A. , Khaikin S. E. Az oszcillációk elmélete. - 2. kiadás, átdolgozva. és javítva - M . : Nauka , 1981. - 918 p.
Cikkek
  1. Neishtadt A. A dinamikus bifurkációk stabilitásvesztési késleltetéséről  (angol)  // Discrete and Continuous Dynamical Systems - Series S: Journal. - 2009. - 1. évf. 2 , sz. 4 . — P. 897–909 . — ISSN 1937-1632 . - doi : 10.3934/dcdss.2009.2.897 .

Linkek