Miranda | ||||
---|---|---|---|---|
Műhold | ||||
| ||||
Más nevek | Uranus V | |||
Felfedezés [1] | ||||
Felfedező | J. Kuiper | |||
A felfedezés helye | McDonald Obszervatórium , Texas | |||
nyitás dátuma | 1948. február 16 | |||
Pályajellemzők [2] | ||||
főtengely ( a ) | 129 900 km | |||
Átlagos pályasugár ( r ) _ | 129 900 km | |||
Orbitális excentricitás ( e ) | 0,0013 | |||
sziderikus időszak | 1413 nap | |||
Keringési sebesség ( v ) | 24 067,7 km/h | |||
dőlés ( i ) | 4.338 | |||
Kinek a műholdja | uránium | |||
Fizikai jellemzők [2] | ||||
Közepes sugár | 235,8 ± 0,7 km (240,4 × 234,2 × 232,9) | |||
Felületi terület ( S ) | 698 710,82 km² | |||
kötet ( V ) | 54 918 670 km³ | |||
Tömeg ( m ) | 6,59±0,75⋅10 19 kg | |||
Átlagsűrűség ( ρ ) _ | 1,214 g/cm³ | |||
Gravitációs gyorsulás az egyenlítőn ( g ) | 0,079 m/s² | |||
Második menekülési sebesség ( v 2 ) | 695 km/h | |||
Forgási periódus ( T ) | szinkronizált (egyik oldala az Uránusz felé néz) | |||
Albedo | 0,32 ± 0,03 [3] | |||
Látszólagos nagyságrend | 15,79 ± 0,04 [3] | |||
Hőfok | ||||
|
||||
Felületi hőmérséklet [4] |
|
|||
Médiafájlok a Wikimedia Commons oldalon | ||||
Információ a Wikidatában ? |
A Miranda , más néven Uranus V , az Uránusz öt nagy holdja közül a legközelebbi és legkisebb . Gerard Kuiper fedezte fel 1948-ban, és Mirandáról nevezte el W. Shakespeare A vihar című művében . Ezt a műholdat csak egy űrszonda, a Voyager 2 vizsgálta közelről , amely 1986 januárjában vizsgálta az Uráni rendszert. Mirandával közelebb került, mint az Uránusz többi műholdjához , és ezért részletesebben lefotózta őt. De csak a déli féltekét lehetett tanulmányozni, mert az északi sötétségbe borult.
A Miranda forgástengelye az Uránusz többi nagy műholdjához hasonlóan szinte a bolygó pályájának síkjában fekszik, és ez nagyon sajátos szezonális ciklusokhoz vezet . A Miranda valószínűleg egy akkréciós korongból (vagy ködből ) keletkezett, amely vagy egy ideig az Uránusz körül létezett a bolygó kialakulása után, vagy egy erős ütközés során keletkezett, amely valószínűleg nagymértékben megdöntötte az Uránusz forgástengelyét (97,86). °). Eközben az Uránusz nagy műholdai közül Mirandának van a legnagyobb orbitális dőlése a bolygó egyenlítőjéhez képest: 4,338 °. A Hold felszíne valószínűleg vízjégből áll, amely szilikátokkal , karbonátokkal és ammóniával keveredik . Meglepő módon ennek a kis műholdnak sokféle felszínformája van (általában az ilyen méretű testek felülete egyenletesebb az endogén aktivitás hiánya miatt). Hatalmas, kráterekkel tarkított, gördülő síkságok találhatók, melyeket törések , kanyonok és meredek lejtők hálózata szel át . A felszínen három szokatlan, 200 km-nél nagyobb régió (az úgynevezett koronák ) látható. Ezek a geológiai képződmények, valamint a meglepően nagy orbitális dőlésszög Miranda összetett geológiai történetét jelzik. Befolyásolhatják az orbitális rezonanciák , az árapály-erők , a mélyben történő konvekció , az anyaguk részleges gravitációs differenciálódása és tágulása, valamint a kriovulkanizmus epizódjai .
A Mirandát 1948. február 16-án fedezte fel a holland (1933 óta az USA -ban élő ) csillagász , J. Kuiper a texasi McDonald Obszervatóriumban , 97 évvel Titania és Oberon felfedezése után . Kuiper célja az volt, hogy megmérje az Uránusz négy akkoriban ismert holdjának relatív nagyságát : Ariel , Umbriel , Titania és Oberon [1] .
John Herschel - Titania és Oberon felfedezőjének fia - javaslata szerint az Uránusz összes műholdját William Shakespeare és Alexander Pope műveinek szereplőiről nevezték el . Miranda nevét Shakespeare A vihar című drámájában szereplő karakterről kapta ( Prospero lánya ) [1] . Ennek a műholdnak a domborművének minden részletét azokról a helyekről nevezték el, ahol William Shakespeare műveinek cselekményei játszódnak [5] .
A Miranda a legnagyobb műholdjai közül a legközelebb az Uránuszhoz: körülbelül 129 900 km-re található a bolygótól. Keringésének excentricitása kicsi (0,0013), és az Uránusz egyenlítői síkjához viszonyított dőlésszöge sokkal nagyobb, mint az összes többi szabályos műhold pályájának: 4,232° [6] [7] . Más szóval, Miranda pályája majdnem kör alakú, és síkja (mint az Uránusz egyenlítőjének síkja) majdnem merőleges a bolygó pályájának síkjára. A pálya nagy dőlése az Uránusz egyenlítőjéhez valószínűleg annak a ténynek köszönhető, hogy a Miranda keringési rezonanciában lehet más műholdakkal - például 3:1 rezonanciában Umbriellel, és valószínűleg 5:3 rezonanciában Ariellel [ 8] . Az Umbriel pályarezonanciája növelheti Miranda pályájának excentricitását, kissé megváltoztatva Umbriel pályáját. A pálya nagy excentricitása az árapály-erők nagyságának szabályos változásához vezet, és ennek következtében a műhold belsejében súrlódáshoz és azok felmelegedéséhez vezet. Ez a geológiai tevékenység energiaforrása lehet [8] . Az Uránusz csekély meglapultsága és kis mérete miatt a holdjai sokkal könnyebben kikerülnek a keringési rezonanciából, mint a Szaturnusz vagy a Jupiter holdjai . Példa erre Miranda, aki kiment a rezonanciából (egy olyan mechanizmus révén, amely valószínűleg rendellenesen nagy dőlést adott a pályájának) [9] [10] .
A keringési periódus 1,41347925 földi nap, és egybeesik a forgási periódussal [11] . Miranda mindig az egyik oldalon az Uránusz felé fordul, pályája teljesen a magnetoszférájában van [12] , és nincs légköre. Ezért a rabszolga féltekét folyamatosan bombázzák a magnetoszférikus plazma részecskéi , amelyek sokkal gyorsabban mozognak a pályán, mint Miranda (az Uránusz tengelyirányú forgási periódusával megegyező periódussal) [13] . Talán ez a hajtott félteke elsötétüléséhez vezet, ami az Uránusz összes műholdján megfigyelhető, kivéve Oberont [12] . A „ Voyager-2 ” egyértelműen csökkentette az ionok koncentrációját az Uránusz magnetoszférájában a műhold közelében [14] .
Mivel az Uránusz „oldalán” kering a Nap körül , és egyenlítői síkja nagyjából egybeesik nagy műholdjainak egyenlítőjének (és pályájának) síkjával, az évszakok váltakozása rajtuk igen sajátos. A Miranda minden pólusa 42 évig teljes sötétségben van, és 42 évig folyamatosan megvilágítva, a nyári napforduló idején pedig a sarkon lévő Nap majdnem eléri a zenitjét [12] . A Voyager 2 elrepülése 1986 januárjában egybeesett a nyári napfordulóval a déli féltekén, miközben az északi féltekén szinte teljes sötétség uralkodott.
42 évente egyszer - az Uránuszon napéjegyenlőség idején - a Nap (és vele együtt a Föld) áthalad az egyenlítői síkján, majd megfigyelhető a műholdak kölcsönös borítása. Számos ilyen eseményt figyeltek meg 2006 és 2007 között, beleértve Arielt Miranda 2006. július 15-én 00:08-kor, Umbrielt pedig Miranda 2007. július 6-án, 01:43-kor [15] [16] .
A műholdak alakja szorosan összefügg méretükkel: a 400 km-nél nagyobb átmérőjű objektumok általában gömb alakúak [5] . A Miranda átmérője körülbelül 470 km, így a kis és nagy műholdak határán helyezkedik el [17] . Sűrűsége a legalacsonyabb az Uránusz fő műholdai között: 1,15 ± 0,15 g/cm 3 , ami meglehetősen közel áll a jég sűrűségéhez [18] . Az infravörös tartományban végzett felszíni megfigyelések lehetővé tették a szilikátokkal és karbonátokkal kevert vízjég [18] , valamint 3%-os ammónia (NH 3 ) kimutatását [18] . A Voyager 2 által szerzett adatok alapján arra a következtetésre jutottak, hogy a kövek a műhold tömegének 20-40%-át teszik ki [18] .
Lehet, hogy a Miranda részben szilikát magvá alakult, amelyet jeges köpeny borít [19] . Ha igen, akkor a köpeny vastagsága körülbelül 135 km, a mag sugara pedig körülbelül 100 km [19] . Ebben az esetben a hő eltávolítása a belekből hővezetés útján történik [19] . A felnik jelenléte a műholdon azonban konvekciót jelezhet . Egy hipotézis szerint a Mirandán lévő jég klatrátot képez a metánnal [20] . A víz-klatrátok a metánon kívül szén-monoxidot és más molekulákat is képesek megkötni, jó hőszigetelő tulajdonságú anyagot képezve – a klatrátok hővezető képessége csak 2-10%-a lesz a közönséges jég hővezető képességének [21] . Így megakadályozhatják a hő kiáramlását a műhold beléből, amely a radioaktív elemek bomlása során ott szabadul fel. Ebben az esetben körülbelül 100 millió évnek kell eltelnie ahhoz, hogy a jég 100 °C-ra melegedjen [21] . A mag hőtágulása elérheti az 1%-ot, ami a felület repedéséhez vezet [20] [21] . Heterogenitása a belekből kiáramló hőenergia heterogenitásával magyarázható [22] .
Miranda egyedi felszínnel [5] rendelkezik, sokféle felszínformával. Ezek repedések , törések , völgyek , kráterek , gerincek , mélyedések , sziklák és teraszok [17] [23] . Ennek a holdnak az Enceladus méretű felszíne rendkívül változatos zónák csodálatos mozaikja. Egyes régiók régiek és jellegtelenek. Számos becsapódási kráter tarkítja őket, ami egy kis inert testtől várható [5] . Más régiókat gerincek és párkányok összetett összefonódása keresztezi, és világos és sötét sávok négyszögletes vagy tojásdad rendszerei borítják őket, ami Miranda szokatlan összetételét jelzi [11] . Valószínűleg a műhold felszíne vízjégből, a mélyebb rétegek szilikát kőzetekből és szerves vegyületekből áll [11] .
Nem. | Név | Típusú | Hosszúság (átmérő), km |
Szélesség (°) | Hosszúság (°) | Valaki után elnevezve |
---|---|---|---|---|---|---|
egy | inverness | korona | 234 | −66,9 | 325,7 | Kastély a " Macbeth " -ből |
2 | Arden | 318 | −29.1 | 73.7 | Franciaország és Belgium erdei , ahol az „ As You Like It ” című mű eseményei bontakoznak ki | |
3 | Elsinore | 323 | −24.8 | 257.1 | Helsingør , a " Hamlet " színdarab díszlete | |
négy | Verona | szegély | 116 | −18.3 | 347,8 | Olaszország városa , ahol a „ Rómeó és Júlia ” mű cselekménye bontakozik ki |
5 | Algéria | 141 | −43.2 | 322,8 | Franciaország régiója , ahol a " The Tempest " című darab játszódik | |
6 | Dunsinan | Vidék | 244 | −31.5 | 11.9 | A " Macbeth " című darabban említett domb |
7 | Markolat | 225 | −15 | 250 | Az ikrek háza Törökországban A hibák komédiájából | |
nyolc | Mantua | 399 | −39.6 | 180.2 | Olaszország régiója , említve a " Two Veronese " című műben | |
9 | Szicília | 174 | -30 | 317.2 | Régió Olaszországban a "The Winter's Tale " című filmből | |
tíz | Stefano | Kráter | 16 | −41.1 | 234.1 | Butler a " The Tempest " -ből |
tizenegy | francisco | tizennégy | −73.2 | 236 | Udvarmester a " The Tempest " -ből | |
12 | Ferdinánd | 17 | −34.8 | 202.1 | A nápolyi király fia a " The Tempest " -ből | |
13 | Trinculo | tizenegy | −63,7 | 163.4 | Jester a " The Tempest " -ből | |
tizennégy | Alonso | 25 | −44 | 352.6 | Nápoly királya a " The Tempest " -ből | |
tizenöt | Prospero | 21 | −32.9 | 329,9 | Milánó törvényes hercege a " The Tempest " -ből | |
16 | Gonzalo | tizenegy | −11.4 | 77 | A nápolyi király tanácsadója a viharból | |
17 | Nápoly | Gödrök | 260 | 32 | 260 | A város , ahol a " The Tempest " című darab cselekménye játszódik |
tizennyolc | szirakúza | 40 | tizenöt | 293 | Az olaszországi régió, ahol a " Tévedések vígjátéka " című mű cselekménye kibontakozik |
Ez ahhoz a feltételezéshez vezetett, hogy ennek a műholdnak a felszínét története során akár 5 alkalommal is újjáépítették. A Miranda képei egy latin "V" betű formájú szerkezetet mutatnak be, a közelben hegyláncok és völgyek, régi kráteres és fiatal sima területek, árnyékos kanyonok 20 km mélységig. Kicsit a központ alatt található a nagy Alonso - kráter , 24 km mély.
Számos hipotézist terjesztettek elő Miranda felületének erős inhomogenitásának magyarázatára. Egyikük szerint Miranda egy nagy égitesttel való ütközés következtében szakadt ketté, ám ekkor a darabok újra egyesültek. Továbbra sem világos azonban, hogy miért maradtak fenn becsapódási kráterek a Hold többi részén. Egy másik hipotézis azt feltételezi, hogy Miranda belei egyenetlenül melegedtek.
A felszín nagy területeit, amelyek színükben vagy fényességükben különböznek a szomszédos területektől, a bolygónómenklatúrában régióknak nevezik ( lat. regio , pl. regiones ). A Voyager 2 felvételein látható Miranda területeit „Mantua területe”, „Ephesus area”, „Sicily area” és „Dunsinan area” [24] nevezték el . Ezek többé-kevésbé erősen kráterezett dombos síkságok [11] . Egyes helyeken törések, párkányok vannak rajtuk , amelyek egy része egyidős, mint maguk a területek, míg mások a feltételezések szerint egészen a közelmúltban - a koronaképződés során - jelentek meg [11] . Ezeket a hibákat grabens kíséri , ami a múltbeli tektonikus aktivitás jelenlétét jelzi [11] . A régiók felszíne szinte egyenletesen sötét, de a kráterek lejtőin világosabb kőzetek láthatók [11] .
A Miranda azon kevés műholdak egyike a Naprendszerben , amelynek koronája ( lat. corona , pl. coronae ) van - egyfajta gyűrű vagy ovális felületi részletek. A modellezés kimutatta, hogy ezek a belekben történő konvekció miatt keletkezhetnek . Feltételezhető, hogy a múltban Miranda megnyúltabb pályával rendelkezett, és minden fordulatkor deformációnak volt kitéve az Uránuszból származó árapály-erők nagyságának változása miatt . Emiatt a belei felmelegedtek, és több folyamban meleg műanyagjég emelkedett a felszínre. A vele kölcsönhatásba lépve ezek a patakok koronákat alkottak [25] [26] .
Jelenleg három ismert koronát fedezett fel a Voyager 2: az Arden koronát (a vezető féltekén), az Elsinore koronát (a hajtott féltekén) és az Invernessi koronát (a déli póluson található). Az albedó kontrasztok Miranda felszínén az Arden és Inverness koronákon a legkifejezettebbek [11] .
Inverness koronájaAz Inverness korona egy körülbelül 200 km²-es trapéz alakú régió, amely a Déli-sark közelében található. Külső szegélye a belső gerincekhez és csíkokhoz hasonlóan sokszöget alkot [11] . Három oldalról (délről, keletről és északról) összetett törésrendszer határolja. A nyugati perem jellege kevésbé egyértelmű, de lehet, hogy tektonikai tevékenység eredménye is. A korona területének nagy részét párhuzamos hornyok foglalják el, amelyeket több kilométeres távolságok választanak el [27] . A becsapódási kráterek kis száma az invernessi koronának kisebb korát jelzi, mint a másik két koronáé [27] .
Az Arden koronájaAz Arden koronája Miranda vezető féltekén található, és 300 km-en keresztül húzódik keletről nyugatra. Észak-déli mérete nem ismert, mivel az északi félteke a terminátor mögött volt (sötétben volt), amikor a Voyager 2 fényképezte. Ezt a koronát egy legalább 100 km széles, világos ferde téglalap alkotja, amelyet sötétebb párhuzamos csíkok vesznek körül. Általában egyfajta "tojás alakú" figurát kapunk [11] . Az Arden korona belső és külső részei nagyon eltérőek. A belső zóna sima domborművel és "márvány" mintával rendelkezik, amelyek nagy világos területeket tartalmaznak, elszórva egy sötét felületen. A sötét és világos felületek rétegtani kapcsolata a Voyager 2 képek alacsony felbontása miatt nem határozható meg. Az Arden korona külső részét világos és sötét csíkok alkotják, amelyek a korona nyugati részétől, ahol áthaladnak a kráteres felszínen (kb. 40° hosszúság), a keleti részig, ahol az éjszakai oldalra mennek ( körülbelül 110° hosszúság) [27] . Ezeket a sávokat sziklák alkotják, amelyek az Arden koronája és Mantua kráteres vidéke közötti határon fokozatosan eltűnnek [27] . Az Arden korábban alakult, mint Inverness, és egy időben Elsinore koronájával [27] .
Elsinore koronaElsinore koronája Miranda rabszolga féltekén található, és a terminátor közelében található a Voyager-képeken. Méretében és szerkezetében hasonló az Arden koronájához. Mindkét koronának van egy körülbelül 100 km széles külső öve, amely körülveszi a belső részt [11] . Ennek a résznek a domborműve a külső öv határán letörő mélyedések és kiemelkedések összetett komplexuma, amelyet csaknem párhuzamos lineáris gerincek alkotnak. A mélyedések kis dombos és kráteres terepszakaszokat tartalmaznak [11] . Az Elsinore koronáján belül kátyúk is találhatók – megközelítőleg párhuzamos mélyedésekből és gerincekből álló rendszerek, amelyek hasonlóak a Jupiter műholdján , a Ganymedeshez [11] .
Miranda felszínén is vannak párkányok . Némelyikük idősebb a koronánál, míg mások fiatalabbak. A legszínesebb, a veronai párkány a terminátoron túlnyúló mély mélyedés szélén figyelhető meg.
Ez a mélyedés az Inverness [11] korona északnyugati oldalától indul , ahol az algíri párkány található, és e korona sávjainak konvergenciájáig nyúlik, majd a terminátorig [11] . Ott körülbelül 20 km szélessége van, széle pedig hatalmas fényes sziklát alkot - a veronai párkányt. Ennek a párkánynak a magassága 10-15 km [11] , ami jóval magasabb, mint a Földön található Grand Canyon falai . Ennek a sziklanak a magassága különösen meglepő a Miranda kis méretéhez képest: a műhold átmérőjének 2-3%-a. Mindezek a következtetések a Voyager 2 képeiből származnak, ahol a veronai párkány túlmutat a terminátoron. Valószínű, hogy ez a párkány az éjszakai oldalon folytatódik, és teljes hossza még hosszabb [27] .
A becsapódási kráterek számával meg lehet határozni a légkörtől mentes szilárd égitest felszínének korát - minél több kráter, annál idősebb a felszín [5] [27] .
A Voyager 2 űrállomás elrepülése során csak a műhold déli oldalán lévő krátereket vizsgálták. Átmérőjük 500 m (látótávolság) és 50 km között változik [27] . A kráterek nagyon változatos alakúak. Némelyiknek nagyon tiszta szélei vannak, és gyakran ütközéskor kilökődő anyag veszi körül. Mások annyira elpusztultak, hogy alig látni őket [27] .
Mirandán nem találtak összetett krátert központi gerincekkel vagy sok gyűrűvel körülvett krátert. A felfedezett kráterek egyszerűek (tálalakú fenekűek) vagy átmenetiek (lapos fenekűek), és a kráterek alakjának méretétől való függése nem figyelhető meg [27] . Mind a körülbelül 15 km átmérőjű egyszerű kráterek, mind a mindössze 2,5 km átmérőjű átmeneti kráterek ismertek [27] . A Miranda-krátereket ritkán veszi körül ejecta, és a 15 km-nél nagyobb átmérőjű kráterekről egyáltalán nem ismerik az ejectát [27] . A 3 km-nél kisebb kráterátmérőjű üregei általában világosabbak, mint a környező felszín, 3-15 km átmérőjénél pedig sötétebbek. De bármilyen méretű kráterek között is vannak olyanok, amelyek kidobása megegyezik a környező felszín albedójával [27] .
Ennek a műholdnak a példáján érdekes geológiai jelenségek figyelhetők meg [27] . Kialakulásának és geológiai evolúciójának magyarázatára a tudományos közösség számos elméletet javasolt [5] . Az egyik az, hogy a Miranda az Uránusz körüli gáz- és porködből vagy akkréciós korongból alakult ki. Ez a korong vagy a bolygó kialakulása óta létezik, vagy egy hatalmas ütközés során keletkezett, ami nagy valószínűséggel az Uránusz forgástengelyének nagy megdöntését eredményezte [28] . Eközben ezen a viszonylag kis műholdon vannak olyan jellemzők, amelyek Miranda korához képest meglepően fiatalok [29] . Úgy tűnik, a Miranda legfiatalabb geológiai képződményeinek kora mindössze néhány százmillió év [27] . A kisméretű (Miranda-méretű) műholdak hőtörténetének modellezése gyors lehűlést és a geológiai evolúció teljes hiányát jósolja a műholdak ködből való felhalmozódása után [27] . A geológiai aktivitás ilyen hosszú ideig nem magyarázható sem a kezdeti akkrécióból származó energiával, sem a radioaktív elemek hasadási energiájával [27] .
A Mirandának van a legfiatalabb felszíne az Uránusz többi holdjához képest . Ez azt jelzi, hogy Miranda felszíne az utóbbi időben jelentős változásokon ment keresztül [27] . Jelenlegi állapotát összetett geológiai története magyarázza, amelyben a különféle csillagászati jelenségek ritka kombinációi játszódnak le [5] . E jelenségek között lehetnek árapály-erők és orbitális rezonanciák jelenségei , valamint konvekciós és részleges differenciálódási folyamatok [5] .
Az élesen eltérő régiókból álló felszín meglepő geológiai szerkezete annak az eredménye lehet, hogy Miranda egy másik égitesttel való katasztrofális ütközés során széttört [5] [27] , majd a gravitáció hatására újra összeállt a darabokból [30] ] . Egyes tudósok az ütközések és a műhold újbóli felhalmozódásának több szakaszát is javasolják [31] . Ez a verzió 2011-ben kevésbé vonzóvá vált, mivel bizonyítékok jelentek meg egy olyan hipotézis mellett, amely a Miranda-dombormű jellemzőit az Uránusz árapály-erejének hatására magyarázza. Nyilvánvalóan ezek az erők előidézhetik az Invernessi és Ardeni koronáknál megfigyelt meredek töréseket. Az ilyen átalakulások energiaforrása csak az Uránusz vonzásereje lehet [32] .
Végső soron a Miranda felszínének kialakulása több mint 3 milliárd évig tarthatott. Körülbelül 3,5 milliárd évvel ezelőtt kezdődött az erősen kráteres régiók megjelenésével, és több száz millió évvel ezelőtt a koronák kialakulásával ért véget [27] .
Az orbitális rezonanciák jelenségei (Umbrielnél nagyobb mértékben, mint Arielnél ) jelentős hatással voltak Miranda pályájának excentricitására [8] , ami a műhold belsejének és geológiai aktivitásának felmelegedéséhez vezethet [8] . A melegítés elősegítette a Mirandán belüli konvekciót, ami az anyag differenciálódásának kezdetét jelentette [8] . Ugyanakkor az orbitális rezonancia némileg megváltoztatná más, nagyobb tömegű műholdak pályáját [8] . De Miranda felszíne valószínűleg túlságosan torz ahhoz, hogy egyedül ezzel a mechanizmussal magyarázható legyen [29] .
Miranda kilépett az Umbriellel való rezonanciából egy olyan folyamat során, amely rendellenesen nagy szöget adott az Uránusz egyenlítőjéhez [8] . A korábban nagy excentricitás az árapály-erők hatására csökkent: a nagyságuk változása a pálya minden fordulóján eltolódáshoz és súrlódáshoz vezet a belekben. Emiatt a hold felmelegedett, és lehetővé tette, hogy visszanyerje gömbalakját, miközben Miranda olyan lenyűgöző geológiai képződményeket tartott meg, mint például a veronai sebhely [29] . Mivel a geológiai aktivitás elsődleges oka a pálya excentricitása volt, ennek csökkenése ennek az aktivitásnak a gyengüléséhez vezetett. Ennek eredményeként a Miranda hideg inert műholddá vált [8] .
A Voyager 2, amely 1986 januárjában tanulmányozta az Uráni rendszert, sokkal közelebb közelítette meg Mirandát, mint az Uránusz bármely más műholdjával (29 000 km-en), és ezért sokkal részletesebben fényképezte le [33] . A Mirandáról készült legjobb fényképek 500 m-es felbontásúak, a felszín körülbelül 40%-át rögzítik, de csak 35%-át - geológiai térképezésre és kráterek számlálására alkalmas minőségben . A Miranda melletti Voyager elrepülése során a Nap csak a déli féltekét világította meg, ezért az északi feltáratlan maradt [11] . Soha egyetlen más űrszonda sem járt Mirandában (és általában az Uráni rendszerben). A NASA Uránusz keringője és szondája a 2020-as években indulhat el . Tartalmaz majd egy orbitális modult és egy atmoszférikus szondát. Ezenkívül egy 168 tudósból álló csoport benyújtotta az Európai Űrügynökségnek az Uranus Pathfinder küldetési programot a külső Naprendszerbe való utazásra, amelynek végső célpontja az Urán volt [34] . Ezeknek a programoknak az a célja, hogy pontosítsák az Uránuszra és műholdjaira vonatkozó adatokat (beleértve a Mirandát is).
David Nordley Mirandának szentelte a "Miranda barlangjaiban" című fantasztikus történetet, amely a műholdon keresztüli utazásról szól.
Szótárak és enciklopédiák | |
---|---|
Bibliográfiai katalógusokban |
Az Uránusz holdjai | |
---|---|
Csoportos felsorolás a pálya fél-nagy tengelyének növekvő sorrendjében | |
Belső műholdak | |
Nagy műholdak | |
Szabálytalan műholdak | |
Gyűrűk | Uránusz gyűrűi |
Műholdak a Naprendszerben | |
---|---|
több mint 4000 km | |
2000-4000 km | |
1000-2000 km | |
500-1000 km | |
250-500 km | |
100-250 km | |
50-100 km | |
Bolygók (és törpék ) szerint |
|
Uránusz | ||
---|---|---|
Az Uránusz holdjai | ||
Jellemzők | Uránusz gyűrűi | |
Nyítás | ||
Kutatás | ||
Uránusz trójaiak | 2011 QF99 | |
Egyéb |
|
Naprendszer | |
---|---|
Központi csillag és bolygók | |
törpebolygók | Ceres Plútó Haumea Makemake Eris Jelöltek Sedna Orc Quaoar Gun-gun 2002 MS 4 |
Nagy műholdak | |
Műholdak / gyűrűk | Föld / ∅ Mars Jupiter / ∅ Szaturnusz / ∅ Uránusz / ∅ Neptunusz / ∅ Plútó / ∅ Haumea Makemake Eris Jelöltek kardszárnyú delfin quawara |
Elsőként felfedezett aszteroidák | |
Kis testek | |
mesterséges tárgyak | |
Hipotetikus tárgyak |
|