Bartlett-kritérium

A  Bartlett - teszt egy statisztikai teszt , amely lehetővé teszi több (két vagy több) minta varianciáinak egyenlőségének ellenőrzését . A nullhipotézis azt feltételezi, hogy a szóban forgó mintákat ugyanolyan szórással rendelkező populációkból vettük.

A Bartlett-teszt parametrikus , és azon a további feltételezésen alapul, hogy az adatminták normálisak . Ezért a Bartlett-teszt alkalmazása előtt javasolt normalitástesztet végezni . A Bartlett-teszt nagyon érzékeny ennek a feltevésnek a megsértésére.

Előnyök :

Hátrányok :

Mintaproblémák – A Bartlett-kritérium alkalmazása

Példa 1. A Bartlett-teszt használható segédeszközként – például más statisztikai teszt ellenőrzésekor , amely a varianciaegyenlőséget használja. Például a Bartlett-kritérium használható segédanyagként az analitikai kémiában [1] . Laboratóriumközi kísérletek lefolytatása során egyfajta probléma merül fel, amikor egy mintát több laboratóriumban elemeznek, majd az eredményeket feldolgozzák és összesítik. Így általában különböző méretű minták vannak. Össze kell hasonlítani a kapott minták átlagértékeit . Ehhez először meg kell győződnie arról, hogy az eltérések egyenletesek a Bartlett-teszt segítségével. Ha a szórások heterogének, akkor az átlagok összehasonlítása nem végezhető el.

2. példa Egy bizonyos termék méretét megmérjük. Összességében ( ) mérésekből álló kísérletsorozatot hajtanak végre. Ebben az esetben a mérések sorozata különböző kísérletezőknek tulajdonítható, különböző mérési technikák alkalmazhatók. Az eloszlás normalitási feltételezésének teljesülése mellett szükséges a minták összehasonlítása a variancia homogenitása szempontjából.

3. példa [2] A csatornakapacitás monitorozásának eredményei alapján a különböző tesztelési napokon rendezett mintákat képeztünk. Adott szignifikanciaszinten ellenőrizni kell a minták homogenitását.

Megjegyzések :

Kritérium leírása

Mindegyik ( ) méretű minta található .  — j-edik érték (mérés) az i-edik sorozatban. A minta szórásait és a szórások mintabecsléseit rendre és -vel jelöljük .

További javaslatok

Null hipotézis

A Bartlett-teszt azt a hipotézist teszteli , hogy az összes minta szórása azonos.

Alternatív hipotézis : legalább két minta van és ( ) eltérésekkel.

(egyeseknek ).

Bartlett statisztikája

A Bartlett-teszt statisztikáit a következő összefüggés alapján számítjuk ki:

.

Itt

, ,

ahol és  az eltérések teljes becslése,

, .

A nullhipotézis mikor és érvényessége, a Bartlett-teszt statisztikájának khi-négyzet eloszlása ​​van (k-1) szabadságfokkal.

Kritérium ( szignifikancia szinten )

Ha , akkor szignifikancia szinten a nullhipotézist elvetjük az alternatíva javára . Itt  van egy khi-négyzet eloszlási kvantis (k-1) szabadságfokkal.

Megjegyzés

A normalitástól való eltérés esetén a statisztika helyett annak módosítását javasoljuk:

,

ahol ,. _

A statisztikának van -eloszlása ​​szabadságfokkal és -fokkal . Ezért a nullhipotézist el kell utasítani, ha .

Irodalom

Lásd még

Linkek

Jegyzetek

  1. Az ANOVA alkalmazása az analitikai kémiában . Letöltve: 2019. február 9. Az eredetiből archiválva : 2019. február 10.
  2. Hasonló kísérleti adatminták feldolgozása (elérhetetlen link) . Letöltve: 2013. június 25. Az eredetiből archiválva : 2013. június 25..