Konopleva, Nelly Pavlovna

Az oldal jelenlegi verzióját még nem ellenőrizték tapasztalt közreműködők, és jelentősen eltérhet a 2019. november 20-án felülvizsgált verziótól ; az ellenőrzések 4 szerkesztést igényelnek .
Nelli Pavlovna Konopleva
Születési dátum 1941. március 18. (81 évesen)( 1941-03-18 )
Ország  Szovjetunió Oroszország
 
Tudományos szféra elméleti fizika , fizikatörténet , természettudományfilozófia
Munkavégzés helye JINR , VNIIEM
alma Mater A Moszkvai Állami Egyetem Fizikai Kara
Akadémiai fokozat a fizikai és matematikai tudományok doktora

Nelli Pavlovna Konopleva (1941. március 18.) orosz tudós, a fizikai és matematikai tudományok doktora, a JINR és a VNIIEM vezető kutatója .

Életrajz

1964-ben diplomázott a Moszkvai Állami Egyetem Fizikai Karán [1] és a Statisztikai Fizika és Kvantummechanika Tanszéken.

Dolgozott K. P. Sztanyukovics laboratóriumában a VNIIEM-en, majd baljával együtt először (1965 szeptemberében) az Összoroszországi Introszkópiai Kutatóintézetben, majd (1967 áprilisától) az Összoroszországi Optikai és Fizikai Mérések Kutatóintézetében. a Szovjetunió állami szabványa.

1970 februárjában visszatért a VNIIEM-be. Ott 1972-ben az ő vezetésével megszervezték az elméleti fizikai laboratóriumot, amely 1998-ig működött.

1991 és 2011 között a JINR Elméleti Fizikai Laboratóriumában dolgozott kiküldött alkalmazottként [2] [3] .

Jelenleg a JINR és a VNIIEM vezető kutatója .

1982-ben megkapta a fizikai és matematikai tudományok doktora címet [4] .

Több tucat tudományos közlemény szerzője a mérőmezők lagrangi és geometriai klasszikus elméletéről , a fizika történetéről és a természettudomány filozófiai problémáiról.

N. P. Konopleva kidolgozta a szelvénymezők geometriai elméletét a fő száltér összekötéseként [5] [6] , valamint egy következetes Lagrange-elméletet az általános formájú mérőmezőkről, amelyek természetesen a gravitációt is magukban foglalják [7] [8] [9] .

N. P. Konopleva egy szabályos módszer szerzője a természetvédelmi törvények és további feltételek megállapítására a lokális szimmetriával rendelkező elméletekben. Megmutatta, hogy bármely tenzor vagy homogén transzformáló mező betöltheti mérőmező szerepét a tér-idő szimmetria lokalizálásában [10] [11] [12] .

N. P. Konopleva számos cikk szerzője a fizika filozófiai problémáiról - az identitás problémájáról [13] , a tehetetlenség problémájáról [14] , a fizika módszertanának kérdéseiről [15] .

N. P. Konopleva és V. N. Popov „Mértékmezők” című monográfiája három kiadásban jelent meg, és angolra is lefordították [16] [17] . Hivatkozás található rá a Great Russian Encyclopedia "Gauge fields" [18] cikkére , D. D. Ivanenko és G. A. Sardanashvili "Gravitáció" [19] és L. B. Okun "Leptonok és kvarkok" című monográfiáira [ 20 ] mutató hivatkozások listájában. ] .

Lánya - a Moszkvai Állami Egyetem Fizikai Karán végzett, a fizikai és matematikai tudományok kandidátusa.

Cikkek

Konferenciák

Egyéb

Irodalom

Jegyzetek

  1. A Fizikai Kar 1964-ben végzettek . Letöltve: 2018. december 10. Az eredetiből archiválva : 2019. március 5..
  2. Közös Atommagkutató Intézet, Elméleti Fizikai Laboratórium. N. N. Bogolyubov, Oroszország . Letöltve: 2018. december 11. Az eredetiből archiválva : 2018. december 30.
  3. Zuev V. M., Konopleva N. P., Nekrasov N. N., Smirnov S. A. Egy autonóm energiaellátó rendszer matematikai modellezése Archivált : 2017. január 31., a Wayback Machine // Electricity.  - 1993. - 6. szám - c. 12
  4. Mérőterületek: a fizikai és matematikai tudományok doktora fokozat megszerzéséhez készült értekezés kivonata: 04/01/02 / Nelli Pavlovna Konopleva . Letöltve: 2018. december 11. Az eredetiből archiválva : 2018. december 30.
  5. Konopleva NP, Sokolik HA Interakciók egységes leírása.  — Nucl. Phys., 1965, v. 72. o. 667
  6. Konopleva N.P., Popov V.N. Mérőmezők . fejezet III. Méretmezők geometriai elmélete // M.: Atomizdat, 1980. - p. 93-154
  7. Konopleva N. P. Mérőmezők geometriai leírása A "Vector mezonok és elektromágneses kölcsönhatások" nemzetközi szeminárium anyaga 2018. december 30-i archív másolat a Wayback Machine Dubna-ban, JINR, 1969
  8. A gravitáció és a relativitáselmélet. - Probléma. 4-6, Kazan, KSU, 1968
  9. Konopleva N.P., Popov V.N. Mérőmezők . fejezet II. Lagrange-féle szelvénymezők elmélete // M.: Atomizdat, 1980. - p. 52-92
  10. A gravitációelmélet és az elemi részecskék problémái. - M., Atomizdat, 1966, p. 22
  11. A gravitáció és a relativitáselmélet. - Probléma. 4-6, Kazan, KGU, 1968, p. 67
  12. Konopleva N.P., Popov V.N. Mérőmezők . fejezet II. A szelvénymezők Lagrange-elmélete. Tenzormezők és Lie-deriválták // Moszkva: Atomizdat, 1980. — p. 81-92
  13. Konopleva N. P., Sokolik G. A. Az identitás problémája és a relativitás elve // ​​Einstein gyűjtemény 1967. - M., Nauka, 1967. - p. 348-370
  14. Konopleva N. P. A tehetetlenség fogalmának fejlődéséről (Newton, Mach, Einstein) // Einstein-gyűjtemény 1975-1976. - M., Nauka, 1978. - p. 216-244
  15. Konopleva N. P., Sokolik G. A. A fizikai elméletek szimmetriái és típusai: a szuverén elmélet lehetőségéről // A filozófia kérdései . - 1972. - 1. sz. - c. 118-127
  16. National Library of Australia Gauge fields / NP Konopleva and VN Popov; fordította a második orosz kiadásból és szerkesztette: NM Queen Archiválva 2019. január 2-án a Wayback Machine -nél
  17. R. Jackiw . Mérőmezők. N. Konopleva és V. Popov // Physics Today , 35 (1982), no. 10. o. 80-81
  18. Kalibrációs mezők archiválva 2019. július 4-én a Wayback Machine -nél // Great Russian Encyclopedia
  19. D. D. Ivanenko és G. A. Sardanasvili Gravitáció. - M., LKI, 2012. - ISBN 978-5-382-01360-2 . - c. 124
  20. L. B. Okun Leptonok és kvarkok. - M., Editorial URSS, 2005. - ISBN 5-354-01084-5 . - c. 309
  21. Springerlink N. P. Konopleva Instantons és a gravitációs elmélet Archiválva : 2019. január 3. a Wayback Machine -nél
  22. Manko V.I. Kalibrációs mezők Archív másolat 2019. január 1-jén a Wayback Machine -nél // UFN , 1973, No. 8, v. 110, p. 682-683
  23. Efimov G. V. A mérőmezők elmélete 2017. augusztus 9-i archív másolat a Wayback Machine -nél // UFN , 1981, 4. sz., 133. v., v. négy

Linkek