Gagaev, Borisz Mihajlovics

Borisz Mihajlovics Gagaev
Születési dátum 1897. július 20( 1897-07-20 )
Születési hely Kazan
Halál dátuma 1975. augusztus 1. (78 évesen)( 1975-08-01 )
A halál helye Kazan
Ország  Oroszország Szovjetunió
 
Tudományos szféra matematika
Munkavégzés helye Kazan Egyetem
alma Mater Kazan Egyetem
Akadémiai fokozat a fizikai és matematikai tudományok doktora
Akadémiai cím Egyetemi tanár
tudományos tanácsadója Parfentiev N. N.
Diákok Gakhov F. D.
Díjak és díjak Lenin parancsa A Munka Vörös Zászlójának Rendje

Borisz Mihajlovics Gagaev ( 1897. július 20., Kazan -  1975. augusztus 1. , uo.) - szovjet matematikus, a differenciálegyenletek, a valós változó függvényeinek elmélete és a matematika története szakterülete. A kazanyi egyetem professzora. Megalapította a kazanyi egyetemen a Matematikai Elemzés Tanszéket, és több mint 40 évig vezette ezt a tanszéket. Sok diákot nevelt fel, köztük számos kiemelkedő matematikust.

Életrajz

Borisz Mihajlovics Gagaev 1897. július 20-án született Kazanyban egy alkalmazott családjában. A gimnáziumban eltöltött évek alatt érdeklődni kezdett a matematika iránt, majd a gimnázium 1916-os elvégzése után a Kazany Egyetem Fizikai és Matematikai Karának matematikai szakára lépett . N. N. Parfentiev professzor irányításával B. M. Gagaev valóságos változók, divergens sorozatok, differenciál- és integrálegyenletek függvényeinek elméletét tanulmányozta [1] .

1923-tól élete végéig B. M. Gagaev a kazanyi egyetemen tanított [2] . Az egyetem elvégzése után 1923-ban tudományos segédmunkatársnak hagyták a matematika tanszéken. A kazanyi egyetemen végzett posztgraduális tanulmányok létrehozása után B. M. Gagaev N. N. Parfentiev posztgraduális hallgatója lett [1] .

Az 1929-es érettségi után B. M. Gagaev a Matematikai Tanszék adjunktusa lett, 1934-től pedig az általa létrehozott Matematikai Elemzés Tanszék vezetője [1] . 1936-ban értekezés megvédése nélkül hagyták jóvá a fizikai és matematikai tudományok doktora címére. 1934-1941-ben és 1944-1947-ben a KSU N. G. Csebotarev Matematikai és Mechanikai Tudományos Kutatóintézetének elemzési szektorát is irányította. 1945-1947-ben B. M. Gagaev a Kazany Egyetem Fizikai és Matematikai Karának dékánja volt [1] .

A kazanyi egyetemen végzett munkájával egyidőben B. M. Gagaev 1927 óta tanított a Kazany Pedagógiai Intézetben, majd az ottani magasabb algebra és elemi geometria tanszéket vezette [1] .

A Nagy Honvédő Háború idején 1943 és 1945 között dolgozott. a Kazany Repülési Intézet aerodinamikai laboratóriumának vezető mérnöke [1] .

B. M. Gagaev nagy figyelmet fordított a fiatal matematikusok oktatására. Tanítványai között számos kiemelkedő matematikus található: F. D. Gakhov , a Fehérorosz SSR Tudományos Akadémia akadémikusa, Ya. B. Bykov, a Kirgiz SSR Tudományos Akadémia levelező tagja , G. S. Salekhov professzorok , M. A. Pudovkin, Yu. , I. A. Kipriyanov, V. N. Monakhov , G. A. Freiman. Összességében B. M. Gagaev több mint 60 fizikai és matematikai tudomány jelöltet hozott fel [1] .

B. M. Gagaev Lenin-renddel, a Munka Vörös Zászlója Érdemrenddel kitüntették [2] .

Tudományos kutatás

Posztgraduális tanulmányai során B. M. Gagaev írta első tudományos dolgozatait a differenciál- és integrálegyenletekről [1] .

1926-ban azonban megismerkedett N. N. Luzin „Integrális és trigonometrikus sorozatok” című legendás disszertációjával, amelyben számos megoldatlan probléma fogalmazódott meg egy valós változó függvényelméletében. Ennek a dolgozatnak a hatására B. M. Gagaev a funkcióelmélet területén kezdett dolgozni. N. N. Luzin egyik problémája vonzotta: megtalálni az összes teljes ortogonális függvényrendszert, amely a differenciálás művelete alatt invariáns. Miután bebizonyította, hogy csak a szabványos trigonometrikus rendszer felel meg ennek a feltételnek, B. M. Gagaev 1927-ben jelentést készített erről a témáról az Összoroszországi Matematikai Kongresszuson, amelyen maga N. N. Luzin is részt vett, és ezt az eredményt 1929-ben publikálta a Reports of the French Academy c. of Sciences M. Plancherel javaslatára[3] . Egy idő után Plancherel egy hiányosságot észlelt ebben a bizonyításban, aminek eredményeként egy másik, a feltételt kielégítő függvényrendszer tárult fel. 1937-ben pedig Gagaevtől és Planchereltől függetlenül ezt az eredményt BV Gnedenko [1] fedezte fel újra .

1928-ban B. M. Gagaev publikált egy tanulmányt a Baer-függvények osztályáról, amelyben megjelölte a szükséges és elégséges feltételeket ahhoz, hogy a Baer-osztály konvergens függvénysorozatának határa ugyanannak az osztálynak a függvénye legyen. Megoldott néhány ortogonális sorozatok konvergenciájának kérdését is [1] .

Később B. M. Gagaev tanítványaival együtt a poliharmonikus függvények és általánosításaik tanulmányozása felé fordult. A normalitás jeleit találta a poliharmonikus függvények családjára (1937) és az elliptikus egyenletet kielégítő függvényekre (1938).

B. M. Gagaev tanulmányozta a súllyal egyenletesen határolt ortogonális polinomokat (1940), tanulmányozta N. N. Luzin N. G. Csebotarev által általánosított problémáját: keressen egy függvényrendszert, amely merőleges a q(x) súlyra, amelynek deriváltjai merőlegesek a p súlyra (x). Sikerült gyengítenie azokat a feltételeket, amelyek mellett ezt a problémát N. G. Chebotarev megoldotta. 1957-ben B. M. Gagaev bebizonyította, hogy ha a függvényrendszert vagy a deriváltrendszert nem kell zárni, akkor bármely, a q(x) súlyra merőleges függvényrendszerből kiindulva fel lehet építeni egy rendszert. lineáris kombinációikból, amelyek szintén ortogonálisak lesznek a p(x) súlyhoz képest. Így feltárta a lezárás követelményének fontosságát [1] .

1948 óta B. M. Gagaev tanítványaival együtt elkezdte tanulmányozni a funkcionális elemzést. "On Convergence in Banach Spaces" [4] című munkájában a gyenge és erős konvergencia közötti intermedier különböző típusú konvergenciája közötti kapcsolatot tanulmányozta [1] .

B. M. Gagaev történelmi áttekintésekkel rendelkezik az ortogonális függvények elméletéről és a matematika fejlődéséről Kazanyban és a Szovjetunióban [5] [6] [7] .

Irodalom

Jegyzetek

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Laptev, 1967 .
  2. 1 2 Borodin, 1979 , p. 122.
  3. Gagaev BM Sur l'unicité du système de fonctions orthogonales invariant relationment à la dérivation // CR Acad. Sci. 188, 222-225 (1929)].
  4. Gagaev B. M. Konvergencia Banach-terekben // Uspekhi Mat . Nauk , 3:5(27) (1948), 171-173.
  5. Gagaev B. M. Kazan matematikusok munkái ortogonális rendszerekkel kapcsolatban // Uspekhi Mat . Nauk , 12:4(76) (1957), 251-262.
  6. Gagaev B. M. Eredményeink a matematika területén a szovjet hatalom negyven éve // ​​Izv. egyetemek. Mat., 1957, 1. szám, 3-8.
  7. Gagaev B. M. A matematikai elemzés fejlesztése a Kazany Egyetemen // Uchen. kb. Kazan. állapot un-ta, 120:7 (1960), 67-86.

Linkek